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Abstract

3D SEM Surface Reconstruction: An Optimized, Adaptive,
and Intelligent Approach

by

Ahmad Pahlavan Tafti

The University of Wisconsin–Milwaukee, 2016
Under the Supervision of Professor Zeyun Yu

Structural analysis of microscopic objects is a longstanding topic in several scientific dis-

ciplines, including biological, mechanical, and material sciences. The scanning electron

microscope (SEM), as a promising imaging equipment has been around to determine the

surface properties (e.g., compositions or geometries) of specimens by achieving increased

magnification, contrast, and resolution greater than one nanometer. Whereas SEM micro-

graphs still remain two-dimensional (2D), many research and educational questions truly

require knowledge and information about their three-dimensional (3D) surface structures.

Having 3D surfaces from SEM images would provide true anatomic shapes of micro sam-

ples which would allow for quantitative measurements and informative visualization of the

systems being investigated. In this research project, we novel design and develop an op-

timized, adaptive, and intelligent multi-view approach named 3DSEM++ for 3D surface

reconstruction of SEM images, making a 3D SEM dataset publicly and freely available to

the research community. The work is expected to stimulate more interest and draw at-

tention from the computer vision and multimedia communities to the fast-growing SEM

application area.
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Chapter 1

Introduction

1.1 Background and Problem Statement

3D surface reconstruction from a set of 2D images has been a very active research area in

computer vision and artificial intelligent over the past decades and has led to a broad range

of real-world applications including 3D world scene reconstruction, movie making, medical

visualization, virtual tourism, mobile robot navigation, virtual reality, and computer

aided design [7], [33], [54], [74], [77], [101], [105], [125].

The technique of Scanning Electron Microscope (SEM) imaging has also been tra-

ditionally employed in a variety of research areas to “view” the surface structure of

microscopic samples [18], [19], [24], [26], [43], [89], [96]. However, SEM images still

remain two-dimensional (2D). Having truly three-dimensional (3D) shapes from SEM

micrographs would provide anatomic surfaces allowing for quantitative measurements

and informative visualization of the objects being investigated. Many facets of science

could benefit from 3D SEM surface reconstruction techniques. For instance, biological

researchers can get 3D surface models of specimens to investigate their surface charac-

teristics, such as recognizing roughness, flatness, and waviness. Medical researchers are

interested in 3D modeling to inspect cell anatomy, taking advantages of virtual reality

applications in medicine [96]. There are also many aims for material science and mechan-

ical engineering in which 3D representation of material properties is critical to accurately

measure a fractal dimension and surface roughness, designing a micro article which needs

to fit into a tiny appliance [27], [29], [101], [94].

While in computer science rich work is available on algorithm designing and software

developing of 3D surface reconstruction from 2D images [7], [33], [94], [125], little attention

has been paid to adapting and optimizing these techniques for 3D SEM reconstruction.

1
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Particularly, very few software tools are currently available. The one that has been

commercialized is MeX [3], which is, however, very costly for small research groups with

limited funding. Also, the installation and use of this software can be difficult for people

without much IT experience.

For these reasons, the current research project will be focused on novel designing and

developing an optimized, adaptive, and intelligent multi-view framework for 3D surface

reconstruction of SEM images, making a 3D SEM dataset publicly and freely available

to the research community. The present work is expected to stimulate more interest and

open the doors from the computer vision community to the SEM and its application area.

1.2 The Scanning Electron Microscope

In electron microscopy, the source of illumination of the specimen comes from a beam of

electrons [26]. The beam is generated in a vacuum by an object called an “electron gun”.

The basic construction of the electron gun comprises three key elements; a filament,

a shield, and an anode. The filament serves as the source of electrons for the beam.

Filaments can vary in composition from tungsten to lanthanum hexaboride [89]. The

second component is the shield. The shield, also referred to as Wehnelt cylinder, bias

shield, focusing electrode and grip cap, primarily functions to direct the emitted electrons

in a downward trajectory in the column of the microscope. The final component is the

anode. The disc like structure is located directly underneath the shield and aids in

drawing electrons down into the column at a constant speed [18]. The electrons emitted

from the gun are controlled by several electromagnetic lenses placed at various points

within the column of the microscope. These lenses control the coherency of the beam,

correct for spherical aberration and regulate spot size. In addition, SEMs exhibit an

extra pair of coils called deflection coils, located near the final lens of the column. During

the scanning operation, voltage passing through the coils is oscillated. This produces a

magnetic field which influences the electron beam, causing it to move back and forth, or

raster, across the specimen [26].

2
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Table 1.1: Comparison of the SE and BSE imaging in a SEM

SE-based imaging BSE-based imaging

Higher resolution and darker intensities Lower resolution and brighter intensities
Inelastic scattering (low energy electrons) Elastic scattering (high energy electrons)
Contains topographical information Contains compositional information

As the beam is rastered, the electrons from the beam will interact with those residing

at the surface of the sample. The interaction will subsequently yield two types of signal.

One form of signal involves the electrons from the beam that collide with the sample and

change trajectory without losing significant energy or momentum. These electrons are

called elastically Backscattered Electrons (BSE). The detection of BSE signal has proven

beneficial to compositional studies of unknown and synthesized materials. Commonly,

the greater the atomic number of the element within a sample, the greater likelihood of

generating BSE [26]. This relationship can be used to provide compositional information

of a sample as elements with a greater atomic number will produce more BSE and a

greater signal [89]. However, due to the high energy with which these electrons interact

with the sample, it is possible for these electrons to conduct multiple collisions before

escaping, as well as penetrate into the interior of the sample. These particular outcomes

result in an excess of signal which negatively influences surface imaging through a re-

duction of resolution [26]. The other product is referred to as Secondary Electrons (SE).

SE result from an inelastic collision between electrons of the beam and the sample. This

transfer of energy can cause the sample to eject electrons of significantly lower energy

levels than BSE or those comprising the beam [43], [89]. Due to the weak nature of the

SE, only those produced at or near the surface are capable of escaping from the sample

and producing a detectable signal [18], [19], [26]. It is for this reason that SE images have

a higher resolution and greater topological contrast than images produced from BSE as

seen in Figure 1.1. We have also summarized the main differences between SE and BSE

based SEM imaging in Table 1.1.

3
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Figure 1.1: Secondary Electron (SE) and Backscattered Electron (BSE) micrographs of
the same area of a TEM copper grid. SE micrograph (a) exhibits greater resolution and
topography on the surface of the grid as well as of the background. It also provides
darker intensities compared with BSE images. BSE micrograph (b) exhibits greater
contrast and brightness between materials comprising the sample. Resolution compared
to SE micrograph is much reduced.

1.3 3D Surface Reconstruction

3D surface reconstruction techniques constitute an important part of 3D computer vision

and its subject matter [33], [73]. It compromises the construction of integrated vision

systems to realistic problems existing in the real world. 3D surface reconstruction has

often been used in the process of creating 3D shape models from only a set of 2D images

[33], [54]. 3D Computer vision has provided an excellent ability to restore the 3D geometry

information of a real scene by solving the inversion problem going from 2D to 3D. We

list popular applications of 3D surface reconstruction in two categories as shown in Table

1.2 [7], [29], [33], [54], [73], [74], [77], [96], [101], [125].

The origin of 3D computer vision dates back to 1957 when Gilbert Hobrough illus-

trated a method and designed an apparatus for analog implementation of stereo image

correlation [60]. In 1963, Larry Roberts proposed the first 3D surface reconstruction tech-

nique by developing a machine perception algorithm which could create and display 3D

geometry information of objects from a single 2D photo [97]. Then, in 1970, B. P. Horn

designed another 3D surface reconstruction technique called Shape-from-Shading (SFS)

[61]. SFS used shading from an individual image in order to calculate the surface orien-

tation. R. J. Woodham, in 1977, designed the Photometric Stereo (PS) algorithm [126]

as a multi-view version of Shape-from-Shading . In 1990, C. Tomasi and T. Kanade were

4
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Table 1.2: The popular applications of 3D surface reconstruction in industry, medicine,
and entertainment.

Biomedical and Medical Industrial and Commercial

3D Microscopy Vision 3D Representation of Mechanical Models
3D Modeling of Tissues 3D Representation of Material Properties
3D Tracking of Human Body Parts Measurement of Fractal Dimension
Inspection of Surfaces Pose Refinement, and Height Evaluation
Medical Visualization CAD/CAM, Game, and Animation
Remote Surgery Roughness Measurement
3D Modeling of Cells Mobile Robot Navigation
Biomedicine and Medicine Virtual Reality Virtual City and Virtual Museum

able to estimate 3D surface structure from a sequence of 2D images [116]. They proposed

a method called Structure from Motion (SFM). In 2002, T. Zickler, P. N. Belhumeur,

and D. Kriegman designed Helmholtz stereopsis [133] to reconstruct the 3D geometry of

an object from a collection of 2D images. In 2011, J. Shotton et al. [103] provided a

new method to predict 3D positions of body joints from a single depth image in a fast

and accurate manner by recording the shape of the reflected points of light by means of

a camera. Instead of temporal information, this was known as structured light (or light

coding) capture. This technique has famously been used in Microsoft’s Kinect accessory.

Readers interested in 3D computer vision and 3D surface reconstruction are referred to

[33], [54], [125] for further information.

1.4 3D Surface Reconstruction from SEM Images

The process of creating a 3D shape model of a microscopic sample is still rather difficult

to solve since its three dimensional shape in the real world is only projected into and

available as 2D digital images. Over the past few years, there has been an expansion in

designing and developing 3D surface reconstruction algorithms for images obtained by a

SEM. These algorithms can be categorized into three main classes: (1) Single-View [11],

[23], [42], [62], [75], [88], [91], [104], (2) Multi-View [94], [101], [114], [134], and (3) Hybrid

[34].
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Figure 1.2: Taxonomy of 3D SEM surface reconstruction studies.

There have also been some sorts of 3D SEM volume reconstruction including Focused

Ion Beam Scanning Electron Microscopy (FIB-SEM) and Electron Tomography (ET)

[50], [67] in which they have tried to characterize the complex microstructure of a sample

in the context of the whole. Using FIB-SEM or ET, a 3D volume of the object or sample

is obtained through the acquisition and manipulation of a series of 2D projections [50].

The series of images are obtained over a range of directions and orientations. The point

is that sample sectioning and possible destruction is required by these techniques but not

in the 3D SEM surface reconstruction. In the current work, we only explore the use of 3D

surface reconstruction techniques for SEM images, and not 3D volume reconstruction.

Figure 1.2 shows a taxonomy of 3D SEM surface reconstruction studies and highlights

our scope in this contribution.

In the following, we reflect the current knowledge and progress in 3D SEM recon-

struction of surfaces from 2D images.
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1.4.1 Single-View Approach

In the Single-View approach, a set of 2D images from a single view point with varying

light directions are considered for 3D SEM surface reconstruction. Photometric Stereo

(PS) is the main algorithm used in this class to produce 3D geometry information of a

microscopic sample [126]. PS is a 3D computer vision algorithm which rapidly computes

the three dimensional geometry of an object by examining 2D images being viewed from

the same viewpoint, but being illuminated from different directions. The PS method

has five general steps: 1) Take a set of single view digital images of an object (sample)

under the different light directions, 2) Determine the light directions, 3) Calculate surface

normals, 4) Calculate Albedo (reflection coefficient), and 5) Depth estimation [58], [126].

Fundamental basics on the PS algorithm can be found in [76], [123].

For application of the PS method to scanning electron microscopy, several methods

of implementation and instrumentation have been developed and utilized to improve the

algorithm and make it more applicable to different areas of research. In 2005, Paluszynski

et al. [88] developed a method of PS by applying signal processing methods and shape

from shading to reconstruct the third dimension of smooth objects. This method assumes

that the SE and BSE detectors distributed are based on the Lamberts Law distribution

[123]. Since some instruments use only 2 detectors, this algorithm is not useful for them.

In 2006, Drzazga et al. [42] developed a method of 3D surface reconstructions of SEM

images. This method employed signal processing to eliminate the errors (i.e. distortions)

such that the inspection of geometric issues in the micro structures is more feasible.

In 2006, Pintus et al. [91] proposed and tested a method for automatic alignment

of PS performed via a BSE detector. This was proposed since PS is beneficial when

sequential acquisition of the backscattered images is performed. This alignment in a

SEM was completely controlled by computer, and the authors demonstrated the pixel

precision of the reconstructed surface by using the PS method. In 2008, Argyriou et

al. [11] developed an iterative PS algorithm in case of having multiple highlights and

shadows. This algorithm was designed to work with at least 3 different light sources, and

was capable of recognizing unreliable sources based on unreliable pixel intensities. While
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most of the work has focused on 3D SEM surface reconstruction algorithms, less research

effort has been spent on the effects of SEM variables and measurement parameters on

3D reconstruction accuracy. In 2008 Marinello et al. [80] investigated how SEM instru-

mental parameters influence the quality of 3D surface reconstruction, recognizing two

main classes of various instrument and measuring factors. Their evaluations involved the

operation of the most famous commercial software package for SEM surface reconstruc-

tion, namely Alicona MeX [3]. They found that image quality and its spatial resolution,

magnification, relative position of detectors and tilt angle are among the most important

parameters which affect the accuracy of 3D SEM surface reconstruction.

In 2013, Slowko et al. [104] carried out 3D surface reconstruction for images obtained

by a SEM. This method was different in equipment, since it provided the environmental

condition of vacuum where a vacuum-detector contained an intermediate vacuum chamber

inside which there was a semiconductor BSE detector.

There are also some optimized versions of Single-View methods that use a refinement

process in which both SEM parameters and 3D geometry information are optimized simul-

taneously. In 2005, Kodama et al. [69] used a genetic algorithm to solve the optimization

problem employed in surface reconstruction of 2D images obtained from SE and BSE

detectors in SEM systems. The Delaunay triangulation [87] was used for the coding.

Since employing a genetic algorithm was computationally expensive, hybrid algorithms

were used taking advantage of genetic algorithm and simulated annealing algorithm [66].

In 2007, Yuniarti et al. [130] solved the PS problem for the case of noisy images

as inputs to the surface reconstruction algorithm. The noisy images make the problem

require nonlinear optimization tools. To solve the nonlinear optimization problem, a 2D

leap frog algorithm [71], [72] was employed, which converts one large problem into a num-

ber of smaller optimization problems. In this work, the effect of changing the size of the

snapshots on the reconstruction algorithm was analyzed. Yuniarti et al. concluded that

the larger snapshots improved the quality of the reconstructions, although the computa-

tion time would increase. Also, median filters were applied to the recovered surface to

decrease the number of outliers. In 2010, Vynnyk et al. [121] implemented the PS tech-
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nique focusing on the detector efficiency and the distribution of the electron beams based

on the Cosine Lambert’s Law [123]. The Cosine Lambert’s Law is one of the requirements

of the PS technique which was suppressed in this approach. As a result of employing

this method, a high lateral and vertical resolution was obtained when measuring the

structures. One of the main disadvantages of this method is that it is only capable of

measuring samples with slope of up to 45 degrees; for larger angles the setup needs to be

improved by optimizing the field distribution to which the sample is subjected. Vynnyk

et al. used an atomic force microscope for the measurements as well as an SEM. Unlike

other microscopes, this microscope does not damage the surface which makes it suitable

for measuring topography data. The PS algorithm has found its application as a new

tool in the semiconductor industry. One of these applications is monitoring the manu-

facturing process precisely to increase the quality of printed circuits. In 2013, Estellers

et al. [45] used the PS method to implement the 3D surface reconstruction of images of

printed circuits taken with SEM. This was done to compare the circuit details with the

expected circuit which led also to a deformation field. This enabled the development of

an optimization based surface reconstruction algorithm. The results showed robustness

to noise and could be applied in the chip manufacturing industry to improve the precision

of the lithographic process.

1.4.2 Multi-View Approach

In the Multi-View approach, a 3D computer vision algorithm is employed, namely Struc-

ture from Motion (SFM) [54], [116]. This method utilizes stereo pairs taken by tilting

the micro object between photographs. SFM is established on the theory of projective

geometry, with considering different perspectives from different view angles to restore the

3D structure of a specific object [54]. By using corresponding feature points in image

pairs, a 3D point can be reconstructed by triangulation [54]. Basic requirements are

the determination of camera calibration (intrinsic camera parameters) and pose (camera

rotation and translation), which may be given by a 3 × 4 camera projection matrix. The

projective geometry method allows the projection matrix and 3D points to be estimated
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using only corresponding points in different views. The SFM method has five major steps

[54], [116], [125]: 1) Take a set of digital images of an object (sample), 2) Identify key

points in the images that can possibly be detected in other images in the set, 3) Search

for corresponding points in images (this step is also called point-matching), 4) Use the

projection geometry theory to estimate camera projection matrices, and 5) Compute 3D

surface model using linear triangulation. Further details for the SFM algorithm can be

found in [54].

In 2005, Raspanti et al. [94] presented a high resolution 3D reconstruction method

based on the SFM algorithm. They firstly read a stereo pair of SEM images, then selected

on the first picture a user defined number of prominent feature points. They also used

Delaunay triangulation [87] to restore the spatial model of a micro sample. In 2007,

Samak et al. [101] used a SFM algorithm to reconstruct 3D microstructure surfaces

from SEM images. The proposed method first computed 3D points from 2D matched

key points, then triangulated the 3D points into the 3D mesh, and finally mapped a 2D

image as a texture on the shape model.

In 2011, Carli et al. [23] performed a theoretical uncertainty evaluation of stereo-pairs

technique for 3D SEM surface reconstruction. Their work discussed 3D SEM surface

reconstruction based on the Piazzesi model function applied to both stereo-pairs and

multi-pairs matched through a rank-area-based method. Uncertainty tables have been

presented for the different cases of tilt and rotation in a SEM. Pixel size and rotation

angle are areas with the greatest degree of uncertainty in 3D SEM stereo-pairs surface

reconstruction. In 2013, Zolotukhin et al. [134] examined the advantages and limitations

of the Structure from Motion approach to perform 3D reconstruction for SEM images.

It was concluded that the algorithm is applicable to build a 3D model of a micro object.

Their proposed traditional SFM algorithm received two images from two camera angles,

found the correspondence key points, estimated the mutual positions of the images using

the RANSAC algorithm [47], [54], and built a 3D surface. They did not mention that we

may have some invaluable information about SEM camera calibration which is useful to

increase the accuracy of the algorithm and reduce the processing time. For example, we
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have all intrinsic parameters of a SEM, including focal length, principal point coordinate

and horizontal and vertical resolution.

1.4.3 Hybrid Approach

The third class of 3D SEM surface reconstruction algorithms is called the Hybrid method,

and it offers a compromise between the Single-View and the Multi-View approaches. In

2003, Danzl et al. [34] presented an algorithm to reconstruct surfaces and 3D images by

applying stereo and shading information from two 2D images. The stereo and shading

information are complementary requirements of the reconstruction, since shape from

shading does the reconstruction very well when the 2D data has homogeneous texture

and shape from stereo helps when there are various features in the data. Despite previous

works which assumed the reflectance map to be known or given by simple mathematical

functions, their work estimated the reflectance map by using a fitting polynomial of

degree 4 and used the stereo and shading information simultaneously. The latter was an

optimization problem where it minimized an energy function with constraints on shading,

height and surface smoothness. This algorithm was run on both synthetic and real SEM

data.

In the following, we briefly summarize the advantages, disadvantages and limitations

of each 3D SEM surface reconstruction strategy.

Single-View Methods

Pros:

(1) It only requires additional lighting.

(2) It can be easily implemented at an appropriate computational cost.

Cons:

(1) It is not able to create a whole 3D model since it only uses a single perspective.

(2) The obtained 3D models would be limited to only a particular view angle.

(3) Using standard SEM machines make it difficult to work using this approach.

Multi-View Methods
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Pros:

(1) It can produce a better 3D model since it uses multiple images.

(2) Most SEM machines can produce images by tilting the specimen over different

angles.

Cons:

(1) It requires more sophisticated algorithms and computational time.

Hybrid Methods

Pros:

(1) It takes advantages of both Single-View and Multi-View approaches.

Cons:

(1) It is not operational or cost effective with common SEM machines.

Based on the pros and cons of each 3D SEM surface reconstruction method illus-

trated in the above paragraph, in this work we will enhance the accuracy, reliability, and

speed of 3D SEM surface reconstruction by a novel optimized, adaptive, and intelligent

algorithm utilizing the Multi-View technique. As we have presented in the taxonomy

(Figure 1.2), an optimized multi-view class of 3D SEM surface reconstruction has not yet

been implemented, and it could be considered as a major part of our contributions. In

addition, we will improve the general performance of the work using and adaptive and

intelligent strategies.

1.5 Motivations and Objectives

The motivations of the proposed work are to revisit the state of the art in 3D SEM surface

reconstruction techniques to provide a better understanding of the work, and integrating

advanced 3D vision technologies into the SEM to:

• Create realistic anatomic shapes from microscopic samples.

• Allow rotation and depth for further interpretation of microscopic objects.
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• Offer quantitative and visual information for a variety of applications in biology

and material sciences.

1.6 The Main Contributions

Our goal is to design an optimized, adaptive, and intelligent multi-view method to cali-

brate SEM extrinsic parameters and reconstruct the 3D shape model in a fast, reliable,

and accurate fashion. The major components of our work will be: (1) Using multi-view

geometry to restore a 3D surface model from SEM micrographs. (2) Take a global op-

timization strategy into account to find the best fitness model for both SEM extrinsic

calibration and its 3D surface structure. (3) Take statistical methodology along with arti-

ficial intelligence and machine learning advantages to develop an adaptive and intelligent

3D microscopy method. Our main contributions follow:

• An important contribution of the work would be introducing an exciting but chal-

lenging application area to the computer vision community. While 3D surface

reconstruction from a set of 2D images in general has been studied for a long time

in computer vision, the use of existing techniques in 3D microscopy vision and

analysis of SEM images has been very limited so far. We will review the evolution

of 3D SEM surface reconstruction systems, and discuss the success and failure of

existing approaches to the problem. We will explain the state of the art algorithms

adopted over the years in attempting to solve the 3D surface reconstruction from

SEM images. The present work is expected to highlight the important roles and

applications of 3D computer vision algorithms in the area of 3D microscopy vision,

particularly 3D surface reconstruction from SEM images.

• We will present a taxonomy of several models, which provides a critical comparison

of the current approaches, their capabilities and deficiencies, and conclude with

some of the challenges that can be resolved with recent advances in 3D computer

vision. We do hope that this work will serve as a guide for 3D SEM surface recon-

struction.
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• The main contribution of this research would be a novel integration of several com-

putational technologies, including multi-view geometry, optimization algorithms,

statistical approaches, and machine learning strategies into the estimation of SEM

motion parameters and its 3D surface reconstruction. With the current work, we

will design and develop a method to calibrate SEM extrinsic parameters and restore

the 3D shape model in a fast, reliable, and accurate fashion.

• We initiate a study of an adaptive algorithm combined with supervised machine

learning strategies and a global optimization platform for reconstructing 3D surface

structures of SEM images. To the best of our knowledge, our work is the first

attempt to design and develop an optimized, adaptive, and intelligent method for

3D SEM surface reconstruction.

• The last contribution of the work would be creating a 3D SEM surface reconstruc-

tion dataset, and make it publicly and freely available to the research community.

The dataset, which will include both 2D SEM images and 3D surface models along

with the underlying methodology, serves as a guide for 3D SEM surface reconstruc-

tion problem, leading to reproducible research in 3D microscopy vision. We also

initiate the study of SaaS based architectures for essential 3D SEM surface recon-

struction techniques. To the best of our knowledge, our work is the first attempt to

design and develop a 3D microscopy dataset and a set of World Wide Web services

for highly demanding 3D SEM surface reconstruction algorithms.
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Chapter 2

3D Surface Reconstruction

In this section, an attempt will be made to discuss the different computational technolo-

gies involved in our proposed 3D SEM surface reconstruction system. We shall begin

with the different parts of the methods to tackle the problem of the multi-view 3D SEM

surface reconstruction problem in an optimized, adaptive, and intelligent fashion.

2.1 Multi-View Geometry

Multi-view geometry is established on the theory of projective geometry, considering

different perspectives to restore the 3D structure of a specific object [33], [54], [84],

[109], [125]. A basic requirement is the determination of camera’s intrinsic and extrinsic

parameters given as a 3 × 4 camera projection matrix. A homogenous 2D point x̃ ∼

[x̃ ỹ w̃ ]> and 3D point X̃ ∼ [X̃ Ỹ Z̃ W̃ ]> (where ∼ means equality up to scale)

are related to their Euclidean equivalents x = [x y ]> and X = [X Y Z ]> by the

following equations [33], [54]:

x = [x̃/w̃ ỹ/w̃]> x̃ ∼ [x y 1]> (2.1)

X = [X̃/W̃ Ỹ /W̃ Z̃/W̃ ]> X̃ ∼ [X Y Z 1]> (2.2)

Letting P be a 3× 4 projection matrix of the camera, a 3D point X̃ is related to its

pixel position ũ in a 2D image array by the following relationship:

ũ = P X̃ (2.3)
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Figure 2.1: A 3D point X and its projected positions in images from two views. The
projections of a point X onto the two images are denoted by xi (image on the left) and
yj (image on the right).

The projection matrix P is typically in the form of A [R t], where A is a 3 × 3

matrix which encapsulates internal parameters of the camera that are required to register

the pixel coordinates of an image with the corresponding coordinates in the camera’s

reference frame. Matrix A can convert x in the camera image plane to a pixel coordinate

ũ = [u v 1 ]> by ũ = Ax. R and t are known as the camera’s extrinsic parameters that

define the location and orientation of the camera reference frame with respect to a known

world reference frame [54]. The 3×3 fundamental matrix, denoted by F, encapsulates the

camera motion from image correspondences using SIFT [78], SURF [15] or other image

feature detection algorithms. By considering a 3D point and its projected images in two

different camera locations, if a point X in 3D space is imaged as xi at the first view and

yj at the second view (Fig. 2.1), then the image points satisfy the equation (2.4). The

equation (2.5) defines the constraint verification for equation (2.4) [33], [54], [125]:

y>j F xi = 0 (2.4)
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F = A−>2 R [t] A−11 (2.5)

The two matrices A1 and A2 include the internal parameters of the first and second

camera, respectively. The essential matrix is the matrix E that relates an image of a

point in one camera to its image in the other camera given a translation and rotation

(equation (2.6)).

E = A>2 F A1 = R [t] (2.6)

From equation (2.3), we know that x = PX . By using equation (2.1), x = w [u v 1 ]>

where w is such a scale factor. If we have at least two 2D images from a specific object,

and if we know P as a projection matrix, then we are able to recover X = (X, Y, Z, 1)> by

least square method. Further information and recent progress on multiple view geometry

can be found in [54].

In the case of multi-view 3D SEM surface reconstruction [114], the pipeline strongly

requires image orientation estimation based on detected and matched feature points in

the 2D SEM image set. The number of inliers corresponding points (True-Positive) as well

as the number of outliers (False-Positive) has a serious impact on the quality of 3D shape

reconstruction. While multi-view 3D surface modeling of SEM images usually employs

globally-fixed thresholds, an adaptive and intelligent strategy will adapt thresholds to the

input images and consequently it is able to detect more inliers, keeping away the outliers

at the same time. The motivation of the current work is to improve the performance,

accuracy, and reliability of 3D SEM surface reconstruction by maximizing True-Positive

as well as minimizing False-Positive corresponding points simultaneously. To this end, we

design and develop a novel framework which includes two distinctive quality attributes

as follows:

(1) Optimized The third attribute of the proposed framework is to integrate a

Differential Evolutionary (DE) strategy [25], [46] into the estimation of SEM extrinsic

parameters and the 3D surface model to determine the best fitness model. It increases

the reliability and speed of the 3D SEM surface reconstruction process.
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(2) Adaptive As we mentioned earlier, feature points detection and points match-

ing has a crucial impact on the quality of 3D SEM surface reconstructions. Since general

3D SEM surface reconstruction algorithms have only used constant and fixed thresholds

to find the corresponding points, we will employ a statistical methodology namely a Con-

trario model estimation [37], [39], to adapt thresholds to input images for each image pair

in the set. This attribute makes users free from manually trade off the thresholds or rely

on the default configurations. Furthermore, it leads the system to increase the number

of correct matches and consequently improves the accuracy and quality of 3D surface

models.

(3) Intelligent Points matching requires comparing a large number of multi dimen-

sional descriptor vectors (e.g., the SIFT algorithm [78] employs a vector of 128 elements).

We apply a machine learning technique in which a binary supervised classifier will identify

feature points that are useful for the matching processing step. This attribute speeds up

and increases the accuracy of the matching process, and it potentially enables a decrease

in the amount of false-positive corresponding points.

2.2 Differential Evolutionary Algorithm

The first component of our work is doing an optimization process by defining a cost

function for any set of parameters (3D points and relative poses including extrinsic SEM

parameters which specify rotation and translation from one view point to the other). We

first estimate the rotation and translation from the set of corresponding points between

two images in the image set. For this purpose we employ the highly used SIFT [78],

[112], [131] algorithm along with KNN [10] to find the matching points in the image pair.

We examined BRIEF [22], and SURF [16] feature detectors and eventually chose the

SIFT algorithm base on our experiments illustrated in [110]. Then, we apply an iterative

strategy called RANSAC [47], [54] to select the correct inlier points in the set of all

corresponding points. We next take advantages of multi-view geometry to estimate the

rotation and translation, and perform linear triangulation to initialize the 3D locations
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of all matching points. The next step is a refinement process by defining a cost function

for any set of parameters as to whether this is a good or bad set.

For the refinement, the most important part is to parameterize the space of rotation

and translation. In order to have much simplicity and better flexibility, the quaternion

parameterization [54] is applied to formulate the 3D rotation.

A quaternion z = a + bi + cj + dk, where a, b, c, d are real numbers and i2 = j2 =

k2 = −1, and z is a unit quaternion if and only if [54]:

|z| =
√
a2 + b2 + c2 + d2 = 1 (2.7)

Then the rotation matrix representation is as follows [54]:

R(z) =


a2 + b2 − c2 − d2 2bc− 2ad 2bd+ 2ac

2bc+ 2ad a2 − b2 + c2 − d2 2cd− 2ab

2bd− 2ac 2cd+ 2ab a2 − b2 − c2 + d2

 (2.8)

We define the translation vector of the second position with respect to the first one as

t = (tx, ty, tz)
>. By considering the equation (2.8) for rotation parameterization and t for

translation, then the parameterization of two projection matrices will be determined by

a seven-dimensional vector θ = (a, b, c, d, tx, ty, tz)
>. Now, SEM extrinsic calibration is

equivalent to determining the parameter vector θ∗ as in equation (2.9). In this equation,

P is the SEM projection matrix which encapsulates rotation and translation (take a look

at step (4) in Fig. 2.4).

θ∗ = arg min
ψ

(
N∑
i=1

‖xi1 − P (Xi)‖2 + ‖xi2 − P (ψ,Xi)‖2) (2.9)

In generic 3D surface reconstruction, the iterative bundle adjustment algorithms [77]

were frequently employed to solve this kind of equation. The bundle adjustment al-

gorithms are among local minimizer (not global) techniques which suffer from different
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problems. For instance, they commonly work on differential functions only and it is im-

portant to have an initial guess close to the real answer to converge [32], [99], [117]. In

contrast to the traditional bundle adjustment approaches, the Differential Evolutionary

(DE) algorithm [25], [35], [46], [107], [108] [113] is a global, population-based, and stochas-

tic optimization strategy which does not tolerate these limitations and also is known as a

fast evolutionary algorithm to optimize real number functions [52], [86]. DE as a genetic

searching-based minimization algorithm uses generated populations within the parameter

space. It first generates an initial population randomly, then iteratively updates them to

estimate the best possible values for an optimization problem. The initial population is

modified from one generation to the other by using two major operators: 1) Mutation,

and 2) Crossover [25], [46]. The population generation process will be continued until a

termination condition is met (i.e. number of generations). Here, we delve into the details

of using the DE optimization strategy to solve the cost function illustrated in equation

(2.9).

We define θi,G as the i-th parameter vector in the G-th generation by:

θi,G = (ai,G, bi,G, ci,G, di,G, txi,G, tyi,G, tzi,G) (2.10)

Where i=(1, 2, ..., Ptotal), and G=(1, 2, ..., Gmax) by assigning the size of population to

POPULATIONtotal, and the maximum number of generations to Gmax. We employ the

mutation operator pi ,G = θp,G+S×(θq,G−θr,G) to produce deviation from one generation

of a population to the next. S ∈ [0, 2] and θp,G, θq,G, θr,G are three individual random

agents in the population. The DE algorithm for solving the problem in equation (2.9) is

described by the following Pseudo-code:

Algorithm 2.1. Proposed DE algorithm for 3D SEM surface reconstruction

Input: Matching points, initial SEM extrinsic parameters and 3D locations

Output: The best fitness of SEM extrinsic parameters and 3D points

begin
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Initialization:

read S, CR, POPULATIONTotal, Gmax;

Initialize the population {θi;(1<=i<=POPULATIONTotal)} randomly;

for (G=1; G < Gmax; G ++)

for (i=1; i<=POPULATIONTotal; i++)

Mutation and Crossover:

choose three individual agents θp,G, θq,G, θr,G randomly;

L = U(0,1);

if L < CR

pi,G = θp,G + S × (θq,G − θr,G)

else

pi,G = θi,G;

if pi,G < θi,G;

θ∗ = pi,G;

end.

end.

return θ∗

end.

The parameters CR ∈ [0, 1] and S ∈ [0, 2] will be obtained by performing several experi-

ments on the problem. We started with seven-dimensional parameter vector (θ∗) which

is randomly assigned from the uniformly distributed numbers in the range (0,1) at gen-

eration G=1. During each generation (G+1), a new parameter vector including both

rotation and translation parameters was then generated by adding the weighted differ-

ence vector between two population members to a third member. After Gmax iterations

ensuring convergence (Gmax=1000 in our experiments) the population member θ∗ with

the highest confidence is considered to present the best solution.
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2.3 The a contrario Methodology

As we discussed in Section 2.3, in generic multi-view 3D SEM surface reconstruction

techniques, we have only employed fixed thresholds to distinguish the matching points in

an image set. In practice, the matching step is often simplified to a specific and predefined

threshold on the Euclidean distance to the nearest neighbor [78]. This is a serious issue,

since the matching procedure is a major and preliminary step in multi-view 3D surface

modeling. To tackle this issue, we need to utilize a system to discover a model which

best fits the data with a confidence threshold that adapts automatically to different input

images and possible noises as well. We employ the a contrario model estimation [40] to

adapt thresholds to input images for each image pair in the set. The a contrario model

estimation method was originally developed by Desolneux et al. [38], [40], [93], [120] to

sort low level features in digital images. The approach assists us to detect sets of image

feature points that are improbable, under a hypothesis that the visual features in given

digital images are independent.

We begin with some principle notation. Suppose that two different views (Images I1

and I2 ) from the same microscopic sample are given. For every image, a feature detector

and descriptor algorithm (e.g., the SIFT algorithm [78]) provides a set of keypoints with

a static descriptor length, denoted by (xi ,D(xi))16i6N , and (yj ,D(yj ))16j6M , where N

and M are the numbers of detected feature points in I1 and I2 respectively. xi and yj

are the coordinate vectors (e.g., pixel coordinates), and D(xi) as well as D(yj ) are the

corresponding feature descriptor vectors. Fig. 2.2 illustrates this situation in which there

will be a 2D projective transformation H such that yj = H (xi) , and xi = H−1 (yj ).

The problem now is to discover a subset P of {1 , 2 , ...,N } × {1 , 2 , ...,M }, and a

homography transformation H such the two major following rules meet:

1. The distance between corresponding feature descriptors is below threshold δD,

certifying that the local image features are very similar to each other:

∀(i, j) ∈ P, dD(D(xi), D(yj)) 6 δD (2.11)
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Figure 2.2: There is a 2D projective transformation H such that yj = H (xi) , and xi =
H−1 (yj ).

2. The distance between two corresponding feature points is below the other

threshold δG, ensuring that the constraint of homography transformation is satisfied:

∀(i, j) ∈ P, dG(xi, yj, H) := max{dG(yj, H(xi)), dG(xi, H
−1(yj))} 6 δG (2.12)

The a contrario methodology is able to automatically adapt and provide both thresh-

olds δD and δG concerning different 2D SEM images and possible noises. Let’s say a

candidate feature point descriptor D(xi) is given, it would be matched with D(yj ) if

dD(D(xi),D(yj )) is small enough under the assumption that all D(yj )s from the set of

feature points in image I2 follow a random model namely background model, which we

shall explain in the next paragraph. Considering the SIFT algorithm [78], we know that

each descriptor D(xi) is made of K orientation histograms, D(xi)= (x 1
i , x

2
i , ..., x

K
i ), and:

dD(D(xi), D(yj)) =
K∑
k=1

dD(xki , y
k
j ) (2.13)

where dD is the earth mover’s distance (EMD) between two histograms that well suits

for circular histograms [36], [79], [93], [120]. Two feature point descriptors are then
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more similar as distances between histograms are small enough. The background model

would be any probabilistic paradigm on a feature descriptor D(y) such that ∀D(xi) h0 :

dD(D(xki , y
k) (k ∈ {1, 2, ..., K}) are mutually independent random variables. In other

words, the sets of feature points are said to be meaningful if their probability is very

low under the hypothesis h0 which states the feature points are mutually independent

random variables [38], [93], [120]. The probability of the distance between D(xi) and

D(y) is smaller than δD could be evaluated as:

P (dD(xi, y) 6 δD |h0) =

∫ δD

−∞
∗Kk=1 pik(x)dx (2.14)

where ∗ is a convolution product and pi
k denotes the density of random variable dD as

dD(D(xm
i ),D(ym)). For every i ∈ {1, 2, ..., N} (image I1 ) , and every k ∈ {1, 2, ..., K}, the

rules pik are experimentally calculated on {y1, y2, ..., yM} (image I2 ). A correspondence

between D(xi) and D(yj) in the set of feature points will be validated and it would

be considered as meaningful as soon as the distance δD = dD(D(xi), D(yj)) is much

smaller than the one expected under the hypothesis h0 (e.g., as soon as the probability

P (dD(xi, y) 6 δD |h0) is quite small). As we have seen so far, for each feature point

descriptor D(xi), it may not be an easy task to configure such a threshold as δDi. Utilizing

a contrario strategy, the selection of these thresholds is substituted by a unique constraint

on the expectation of the number of false alarms (NFA), that would be established in a

handy way. For this purpose, the a contrario methodology introduces a function of D(xi)

and δD as follows:

NFA (D(xi), δD) = N ×M × P (dD(xi, y) 6 δD |h0) (2.15)

The NFA (D(xi), δD) evaluates how likely that the distance between D(xi) and D(y) is

smaller than δD concerning the hypothesis h0 on D(y). Hence, a correspondence between

D(xi) and D(yj) would be ε-meaningful if:
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NFA (D(xi), dD(D(xi), D(yj)) 6 ε (2.16)

The following threshold will make it possible to confirm or refuse preferable correspon-

dences between D(xi) and D(y). A correspondence would be validated if dD(D(xi), D(yj)) 6

ˆδDi(ε).

ˆδDi = arg max
δD
{NFA(D(xi), δD) 6 ε} (2.17)

Fig. 2.3 visually shows the advantages of this strategy to improve the points matching

process between two 2D SEM images.

2.4 Points Matching Using a Supervised Machine

Learning Strategy

As we stated earlier, image points detection and matching have a great impact on the

quality of multi-view 3D SEM surface reconstruction. The matching process of image

features needs comparing a large number of multi dimensional descriptor vectors (e.g.,

the SIFT algorithm [78] utilizes a vector of 128 elements). Our goal in this section is to

speed up and increase the accuracy of discovering corresponding points by classifying the

extracted feature points in two major classes as follows:

• Significant feature points: These points are highly salient features, so matching

between such feature points in different 2D SEM images is a great indicator of

similarity.

• Insignificant feature points: These kind of points are less salient features, and

they can not contribute visual similarities, so they could be operationally excluded

from the matching process.
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Figure 2.3: This figure illustrates the usefulness of the a contrario approach for the
process of points matching. (A) Shows two SEM images from a TEM copper grid bar.
(B) Shows the result of points matching using the SIFT algorithm. Only 2207 inliers
have been detected. (C) Shows the results of points matching using SIFT algorithm plus
a contrario strategy. Here, 3119 inliers have been detected. The green lines in (B) and
(C) show all detected matching points including correct and incorrect ones.
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In doing so, we make a binary classifier that can classify feature points from each

other, identifying significant and insignificant points in a given dataset. Assume an input

image I1 is given. Using a feature detector algorithm, such as SIFT [78], a set of N feature

points would be extracted from the given image I1 . Every feature point ni ∈ N can be

described by a sequence of features F and denoted as QF (ni). In addition, assume that

there is a classification function y which assigns a particular label for every feature point

using the feature descriptor vector, such that:

y(QF (ni)) ∈ C, C = {−1, 1} (2.18)

where -1 associates to the class of insignificant feature points, and 1 corresponds to

the significant class. To make a classification function, a training dataset is required. A

training instance for a feature point n is the tuple n(x, y,QF (ni), Class), such that x , y

are the pixel coordinates for the feature point, QF (ni) is the feature vector, and C lass is

the pre-defined category (e.g., significant or insignificant) of the feature point. Once the

classification function has been learned, it can be utilized to determine the efficiency of

a test feature point n ′ for the process of points matching.

We made a training dataset by utilizing a collection of 8 groups from a total of 41

2D SEM images including 167241 feature points [5], [115]. Each group consists of several

SEM micrographs that are visually similar to each other, and they are captured by tilting

the same specimen by different angles. Based on our previous experiences illustrated in

[93], we employ the SIFT algorithm [78] along with KNN [10] and RANSAC strategies

[47] to categorize the feature points in the training dataset. For each set of 2D SEM

images, an image is randomly chosen and matched with the other images in the same

group. A feature point is labeled as “significant” if it has a correspondence in at least one

of the other images in the group. Other feature points that do not fulfill the condition,

are then labeled as “insignificant”.

In doing supervised machine learning, we examined four classification algorithms,

namely Naive Bayes [81], [95], [115], Random Forest [13], [21], [59], Logistic Regression
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[31], [49], [122], and Support Vector Machine (SVM) [17], [30], [63], [83] using the Weka

software [53] which consists of a collection of easy-to-use machine learning algorithms in

Java. We employed those components by their default and predefined settings established

in the Weka 3.6 [4]. Based on the experiment that will be illustrated in Section 3.7, we

eventually picked up the SVM classification algorithm to train and test the feature points

data to know whether a point would be categorized as “significant” or “insignificant”.

2.5 3DSEM++: An Optimized, Adaptive, and In-

telligent 3D SEM Surface Reconstruction Ap-

proach

In this section, we put everything together to tackle the problem of 3D SEM surface

reconstruction in an adaptive, intelligent, and optimized fashion. Fig. 2.4 shows the

pipeline and block diagram of the proposed system.

We start with taking several 2D SEM micrographs by tilting the sample stage across

different angles as shown in Fig. 3.1. This step requires SEM imaging configurations,

such as magnification, working distance, etc. We then should detect and describe feature

points in every single image in the image set, and discover the matching points. In doing

so, we utilized very well-know algorithms, such as SIFT [78], SURF [15], ORB [100], and

BRIEF [22], and eventually employed the SIFT algorithm based on our experiments illus-

trated in [110]. We then take the a contrario and supervised machine learning strategies

explained in Section 2.3 and 2.4 into account to discover corresponding points between

the images. Once we are done with that, we will estimate the image motion, the rigid

body transformation from the first image to the next one using the corresponding points

and epipolar geometry [54]. Having the relative positions of the SEM images, the 3D

location of all matching points will be reconstructed by linear triangulation [54]. Finally,

and for the purpose of finding the best fitness model, a global optimization technique

namely Differential Evolution (DE) [25], [46] algorithm as illustrated in Section 2.2 will
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Figure 2.4: The pipeline of the proposed framework is shown in this figure. We begin
the process with taking several 2D SEM micrographs by tilting the sample stage across
different angles. This step requires SEM imaging style, such as magnification, working
distance, and etc. We should detect and describe feature points in every single image
in the set. Once we have done that, we will estimate the image motion, the rigid body
transformation from the first image to the second one based on the matching points
we have found in the image set. To identify a good enough number of inliers, we take
adaptive and intelligent strategies illustrated in Section 2.3 and 2.4 into account. Once we
estimate the relative position of the SEM images, the 3D position of all matching points
would be reconstructed by linear triangulation. Finally, and for the purpose of finding
the best fitness model, a global optimization technique called DE would be performed.

be performed.
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Chapter 3

3D SEM Surface Reconstruction and Experimental

Validation

In order to study and analyze the general performance, accuracy, and speed of the pro-

posed system discussed in Chapter 2, extensive experiments on both real and synthetic

data were carried out. In Section 3.1 and 3.2, an introduction to SEM imaging and biolog-

ical sample preparation will be explained. In Section 3.3, we first introduce the test bed,

experimental setup, and the dataset attributes. The qualitative 3D visualization results

obtained by real microscopic samples are shown in Section 3.4. After that, in Section

3.5, we measure and compare the accuracy of our proposed framework to SEM extrinsic

calibration using real microscopic samples along with the ground truth SEM rotation.

In Section 3.6, we study the convergence rate of our proposed strategy with respect to

different numbers of generations employed by the DE algorithm. Section 3.7 shows the

validation summary for the prediction model. At the end of experimental validations,

in Section 3.8 we further examine the quantitative validation and compare the system

accuracy on 3D shape modeling and 3D rotation calibration by applying the proposed

method on a set of synthetic data, namely “Face” models [90].

3.1 SEM Imaging

The SEM produces high-resolution micrographs by accelerating an electron beam down-

ward, in a vacuum, within the instrument column through a series of electromagnetic

lenses and apertures, which regulate the size and coherency of the beam down to a

nanometer-scale focal point. The electron probe scans within a frame a raster, line by

line, over the specimen surface via an oscillating magnetic field generated by an electro-

magnetic coil near the final lens of the column. Magnification is changed by adjusting
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the length of the scan lines on the specimen. The rastering electron beam creates a

volume of primary excitation within the sample which causes a variety of interactions

between the electrons and the specimen, of which there are two main types: elastic and

inelastic collisions. Elastic interactions represent high-energy electrons that are scattered

by atomic nuclei in the sample, immediately redirecting out of the specimen without a

loss of energy. These backscattered electrons (BSE) are highly useful in the study of the

elemental composition of samples. In contrast, inelastic interactions occurring between

the incident beam and loosely bound orbital shell electrons of the sample eject secondary

electrons (SE) of significantly lower energy (0-50eV), which can be drawn in by a posi-

tively biased Everhart-Thornley detector, where they are converted to photons, amplified

in a photomultiplier and converted to an electrical signal. Secondary electron signal has

the advantage of providing high-resolution surface topography since their lower energy

permits only near-surface interaction with the specimen. In an SE image, the brightness

of a given pixel correlates to the sum of the detected secondary electrons emitted from

the corresponding beam location on the surface of the specimen. The SE image is thus

a topographic map of the specimen, formed by the variation in SE emission as the beam

is scanned over the surface, where surface protrusions and features angled towards the

detector produce the greatest SE yield [18], [20], [26], [48], [89].

A Hitachi S4800 field emission scanning electron microscope (FE-SEM) was used to

produce the SEM micrographs in this contribution. It is equipped with a computer

controlled, motorized goniometer stage capable of 5 axis of movement (x, y, z, tilt and

rotation) controlled by Hitachi PC-SEM acquisition software. Samples were imaged at

accelerating voltages of 3 or 5kv with emission current set to 10uA and normal probe

current. For greatest signal, both upper and lower Everhart-Thornley SE detectors were

utilized (Fig. 3.1). Working distance (z) was set to optimize depth of field for both

maximum tilt and magnification used, and changes in working distance and magnifica-

tion during the tilt series were compensated for automatically by the PC-SEM software.

Brightness and contrast was manually adjusted for consistency between micrographs.
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Figure 3.1: SEM imaging for the purpose of 3D SEM surface reconstruction.

3.2 Biological Sample Preparation for a SEM

With the advent of electron microscopy, novel ways to acquire specimens that were agree-

able with the new technology were subsequently investigated. Among biologists, this

means preserving the native structure of the sample without compromising the integrity

of the vacuum or emission of electrons. Thus the vast majority of biological samples

require a consistent methodology for preparation to be viewed by SEM. A generalized

protocol for biological specimen preparation is as follows [26]:

1. Fixation: Immersion of specimen in chemical fixative to preserve natural structure

of the sample. Examples: Glutaraldehyde, Formaldehyde and Paraformaldehyde.

2. Rinse: Removal of excess fixative and buffer salts with distilled water.

3. Post-Fixation: Further stabilizes sample and enhances conductivity.

4. Rinse: Removal of excess fixative and buffer salts with distilled water.
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5. Dehydration: Removal of water from sample. Transitional fluids like carbon

dioxide are not miscible with water.

6. Critical Point Drying: Drying sample with minimal deformation. Liquid carbon

dioxide is commonly used.

7. Specimen Mounting: Specimen is mounted on a conductive stub. A variety of

adhesives may be used depending on the nature of the sample.

8. Specimen Coating: A thin layer of conductive coating is applied to the sam-

ple through sputter coating or thermal evaporation. Examples: Gold, Platinum,

Iridium, Chromium and Carbon. Metal alloys may also be used.

3.2.1 Chemical Fixation

The first step to preparing biological samples for electron microscopy is cross-linking

molecules of the sample together the specimen without altering their natural structure

and organization. Chemical fixation is a ubiquitous method of sample preservation that

involves immersing the sample in a fixative [19]. The length of immersion is variable

between specimens. Plant tissue, which comprises semi-impermeable barriers like cell

walls or waxy cuticle on the tissue surface, require a longer immersion time for the fixative

to fully infiltrate the sample. The relative thickness of the desired sample must also be

taken into consideration when determining fixation time. It is also important to keep the

specimen under optimal physiological conditions prior to and during fixation in order to

reduce the possibility of creating artificial characters in the sample. Common groups of

fixatives include aldehydes, heavy metals, and cold organic solvents. In some cases, a

secondary fixation with a heavy metal is used to apply contrast, preserve membranes or

enhance conductivity of the sample [26].
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3.2.2 Dehydration

After the biological specimen has been preserved, the specimen is rinsed in water to re-

move excess buffer salts and unreacted fixative. This step is subsequently followed by the

complete removal of all of the water from the sample. This is particularly important for

maintaining the life-like state of sample because the removal of water reduces the pressure

applied to the specimen surface during drying. Commonly, anhydrous organic solvents

such as ethanol and acetone are used as an intermediate fluid to gradually remove any

water present within the sample. Despite the fixation conducted previously, the sample is

still susceptible to artificial characters like shrinking and extraction of internal elements.

Ethanol, which is relatively gentle on the sample, is predominantly used during dehy-

dration [26]. Acetone, by contrast, is a very effective solvent and capable to extracting

lipidic compounds from the biological sample with relative ease. Due to the hygroscopic

nature of anhydrous solvents, it is very important not to leave them exposed to the air for

prolonged periods of time. Prolonged exposure can result in absorption of atmospheric

water, rendering the dehydration process ineffective [19]. Dehydration of the sample is

accomplished gradually through the incubation of increasing concentrations of the chosen

solvent, culminating with several changes in 100% absolute solvent. As a general rule of

thumb, the less amount of time spent in the dehydrating solutions, the better [26].

3.2.3 Drying the Sample

Although allowing the sample to air dry is an option, most microscopists forgo this choice

due to the deformation that results. Most biological samples, when air dried, will exhibit

a collapsed or distorted appearance. This artifact is a result of the surface tension forces

associated with the interface between the liquid and gaseous states of the solvent. The

pressure exerted on the sample can reach an excess of 2000 pounds per square inch

(psi) when air drying, enough to easily destroy any fine or fragile features that may be

present in the natural state. To avoid the destruction of the sample, a method known as
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critical point drying (CPD) is commonly employed. CPD involves gradually replacing the

dehydrant with a transitional fluid such as liquid carbon dioxide. Following the removal of

the intermediate drying fluid, the chamber containing the specimen and transitional fluid

is slowly heated to achieve a specific temperature and pressure. The temperature and

pressure achieved depends on the transitional fluid used [19]. For liquid carbon dioxide,

conditions of 31◦C and 1073 psi are required to reach the critical point. At this point, the

density of the liquid phase within and about the sample equals the density of the gaseous

phase. This transitions the sample from being immersed in a fluid to immersion a dense

vapor, thus avoiding any damaging effects from the liquid/gas interface. Upon achieving

the critical point, the chamber remains heated while the vapor is slowly released until

atmospheric pressure and the pressure within the chamber reach equilibrium [19].

3.2.4 Mounting and Conductivity

The dried specimen is then mounted a metal mount called a stub. Choosing the appro-

priate means of adhesion to the stub depends on a variety of factors. Is the sample large

or small? Is the sample naturally conductive? Is orientation important for the sample?

Methods for adhesion can range from a simple sticky tab to durable epoxy or cement [19].

Regardless of the method used, the sample must remain mechanically stable. It is im-

portant to choose a medium that will not damage the sample or compromise the vacuum

of the instrument through out-gassing of solvents. Following adhesion of the sample to

the stub, the sample is coated with a conductive material. Most biological specimens are

not inherently conductive. As a result a coating of metal or carbon must be applied to

reduce the chance of producing artificial characters that result from a buildup of electrons

during imaging. The coating can be applied using an apparatus called a sputter coater

or by thermal evaporation [19].
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3.3 Experimental Setup

A Hitachi S-4800 Field Emission Scanning Electron Microscope was used to generate the

micrographs for this study. This microscope is equipped with a computer controlled 5

axis motorized stage capable of 360 degrees of rotation with a tilt range of -5 to 70.

Sample manipulation, such as tilt, Z-position, and rotation of the stage, as well as image

processing and capture functions were operated through the Hitachi PC-SEM software.

The working distance that would give the required depth of focus was determined at the

maximum tilt for each specimen at the magnification chosen for image capture. As the

sample was tilted in successive 1 increments through the software, the image was centered

manually by moving the stage in the x- and y-axes with the stage positioning trackball.

The working distance and magnification were kept consistent in each captured image of

the tilt series by changing the Z-axis position as required. Brightness and contrast were

manually adjusted for consistency between micrographs, using the same structure in each

image. The micrographs were acquired with an accelerating voltage of 3 kV, utilizing the

signals from both the upper and lower secondary electron detectors.

The proposed 3D SEM surface reconstruction system were implemented by Java2SE 8

and Matlab 2012a. We used 64-bit Windows 8 operating system on a PC with 3.00 GHz

Intel Dual core CPU, 4MB cache and 6GB of RAM. Datasets names and attributes, SEM

configurations, and initial parameters in our DE based algorithm are shown in Table 3.1.

3.4 Qualitative 3D Visualization

Six qualitative 3D visualization results using real microscopic samples are shown in Fig.

3.2 to Fig. 3.7. The first rows in these figures show a set of 2D images obtained from

different perspectives. Their 3D point clouds, 3D surface meshes, and 3D shape models

which were reconstructed by using our proposed method are also presented in the figures.

The 3D geometric models presented here indicate that the proposed method is promising

for 3D SEM surface reconstruction. By considering these results, it is evident that higher

resolution SEM snapshots (SEM micrographs) improved the quality of the reconstruction
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Table 3.1: Experimental setup and the dataset attributes. We used G=1000 (stopping
condition for the DE algorithm) based on the experiments illustrated in Section 3.5 to
satisfy both accuracy and the time efficiency. The initial population for the parameter
space (θ) was generated as uniformly distributed random numbers in the range (0,1).
The reason for choosing such a range is related to the common possible tilting angles in
a SEM which is almost (0 to π

4
) for our dataset.

Datasets (1): pollen grain from Brassica rapa
(2): TEM copper grid
(3): tapetal cell of Arabidopsis thaliana
(4): Hexagon TEM copper grid
(5): Guitar String
(6): TEM copper grid bar

Images attributes (1): 854*640 grayscale, 512 dpi
(2): 2560*1920 grayscale, 512 dpi
(3): 2560*1920 grayscale, 512 dpi
(4): 2560*1920 grayscale, 512 dpi
(5): 5120*3840 grayscale, 1024 dpi
(6): 1280*960 grayscale, 512 dpi

Rotation angle (1): 3 degrees
(2): 7 degrees
(3): 9 degrees
(4): 10 degrees
(5): 4 degrees
(6): 11 degrees

SEM detector SE (mix) as shown in Fig. 3.1
SEM intrinsic parameters A = [0.047 0 0; 0 0.047 0; 0 0 1]
DE parameters CR = 0.8, S = 0.9

POPULATIONTotal = 55, Gmax = 1000
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process, although the computation time increased. Having more corresponding points and

employing bigger rotation angles will also enhance the quality of the 3D reconstructed

surfaces.

3.5 SEM Extrinsic Calibration

This section presents a validation summary on the reliability, accuracy, and time efficiency

of the proposed strategy for SEM rotation estimation. We present various experimental

results performed on multiple datasets illustrated in Table 3.1. We were given the rotation

angles, but rotation axis and translation vector were unknown. A 3D rotation is a kind

of rotation about one of the axes of a coordinate system. The following 3D rotation

matrices (Rx, Ry, and Rz) rotate vectors by an angle θ about the x, y, and z axis, in

three dimensions [54]:

Rx(θ) =


1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 (3.1)

Ry(θ) =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 (3.2)

Rz(θ) =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (3.3)

By using only two images in each set and setting the maximum number of DE gener-

ations to 1000, we got a rotation matrix R1 and translation vector t1 for the pollen grain
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Figure 3.2: Qualitative visualization of 3D SEM surface reconstruction. This figure shows
2D SEM images, 3D point clouds, 3D reconstructed surface meshes, and surface models
of a pollen grain from Brassica rapa. We present 3D point clouds, 3D surface meshes and
the shape models from different perspectives. 2D images were obtained by tilting the
specimen stage 3 degrees from one to the next in the image sequence. The attributes of
these 2D images are illustrated in Table 3.1.
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Figure 3.3: Qualitative visualization of 3D SEM surface reconstruction. In this figure, we
present 2D SEM images, 3D point clouds, 3D surface meshes, and 3D shape models of a
part of a TEM copper grid specified by the yellow circle in the first 2D image (at the first
rows). We show 3D point clouds, 3D surface meshes and the shape models from different
views. The 2D images were taken by tilting the TEM copper grid 7 degrees from one to
next in the sequence. The attributes of these 2D images are presented in Table 3.1.
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Figure 3.4: Qualitative visualization of 3D SEM surface reconstruction. The figure shows
2D SEM images, 3D point clouds, 3D surface meshes, and 3D reconstructed surfaces of a
tapetal cell of Arabidopsis thaliana from different views. These images were obtained by
tilting the specimen stage 9 degrees from one to the next in the image set. The attributes
of these 2D images are shown in Table 3.1.
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Figure 3.5: Qualitative visualization of the proposed 3D SEM surface reconstruction
framework. This figure shows 2D SEM images, 3D point clouds, 3D surface meshes, and
a magnified view of a Hexagon TEM copper grid. These images were obtained by tilting
the specimen stage 10 degrees from one to the next in the image sequence. The number
of point clouds are 37829. The attributes of these 2D images are shown in Table 3.1.
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Figure 3.6: Qualitative visualization of the proposed 3D SEM surface reconstruction
framework. This figure shows 2D SEM images, 3D point clouds, 3D surface meshes, and
a magnified view of a Guitar String. These images were obtained by tilting the specimen
stage 4 degrees from one to the next in the image sequence. The yellow rectangle specifies
a part of the specimen which will be 3D reconstructed by the proposed method described
in Section 2. The number of point clouds are 17228. The attributes of these 2D images
are shown in Table 3.1.

43



www.manaraa.com

Figure 3.7: Qualitative visualization of the proposed 3D SEM surface reconstruction
framework. This figure shows 2D SEM images, 3D point clouds, 3D surface meshes, and
a magnified view of a TEM copper grid bar. These images were obtained by tilting the
specimen stage 11 degrees from one to the next in the image sequence. The number of
point clouds are 8811. The attributes of these 2D images are shown in Table 3.1.
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from Brassica rapa (tilting by 3 degrees), R2 and t2 for the TEM copper grid (tilting by

7 degrees), R3 and t3 for the tapetal cell of Arabidopsis thaliana (tilting by 9 degrees), R4

and t4 for Hexagon TEM copper grid (tilting by 10 degrees), R5 and t5 for Guitar String

(tilting by 4 degrees), and R6 and t6 for TEM copper grid bar (tilting by 11 degrees) as

follows:

R1 =


1.0000 0.0004 0.0001

0.0007 0.9948 −0.1200

0.0011 0.1200 0.9948

 (3.4)

R2 =


1.0000 0.0001 0.0014

0.0008 0.9849 −0.1407

0.0016 0.1407 0.9849

 (3.5)

R3 =


1.0000 0.0005 0.0015

0.0000 0.9835 −0.1648

0.0007 0.1648 0.9835

 (3.6)

R4 =


1.0000 0.0007 0.0004

0.0009 0.9841 −0.1654

0.0006 0.1654 0.9841

 (3.7)

R5 =


1.0000 0.0003 0.0000

0.0011 0.9941 −0.1211

0.0024 0.1211 0.9941

 (3.8)
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R6 =


1.0000 0.0001 0.0007

0.0004 0.9839 −0.1663

0.0004 0.1663 0.9839

 (3.9)

t1 = [0.10073 0.0019 0.0029] (3.10)

t2 = [0.2164 0.1003 0.0017] (3.11)

t3 = [0.3727 0.1020 0.0002] (3.12)

t4 = [0.3733 0.1000 0.0004] (3.13)

t5 = [0.1011 0.0023 0.0001] (3.14)

t6 = [0.3739 0.0043 0.0016] (3.15)

Reviewing 3D rotation matrices (equations 3.1, 3.2, and 3.3), we can claim that the

rotation axis is the X axis. Various analysis from different angles in images and different

numbers of DE generations (Gmax) are presented in Table 3.2. The 3D rotation estimation

error (∆R) ranges from 4.98E-04 to 5.80E-03, mostly depending on the Gmax. ∆R has

been estimated using the equation (3.16):
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∆R(Rreal, Restimated) =

√√√√ n∑
i=1

n∑
j=1

(Rreal(i,j) −Restimated(i,j))2 (3.16)

It is evident that the reliability and the robustness of our approach remains acceptable

by using different rotation angles, different images, and a varying number of matching

points. We did not perform ground truth evaluation for the translation vector. How-

ever our estimation for translation values appear to have worked for 3D SEM surface

reconstruction.

We have also compared the experimental results of our proposed approach with two

other traditional approaches; namely ADBA (Algebraic Distance Bundle Adjustment)

and ASDBA (Adaptive Sampson Distance Bundle Adjustment) [8], [118], [119] (Table

3.3). Elapsed times in Table 3.2 indicate only SEM extrinsic calibration. A graphical

comparison of 3D reconstructed surfaces of tapetal cell of Arabidopsis thaliana using

ADBA, ASDBA, and DE techniques is shown in Fig. 3.8.

3.6 Convergence Rate of the Proposed System

In this section we analyze the convergence rate of our proposed framework with respect to

different numbers of generations (Gmax) in Algorithm 2.1. The graphical comparisons are

presented in Fig. 3.9. In this experiment we only use two images tilted by 3 degrees with

749 3D points for pollen grain, 7 degrees with 830 point clouds for TEM copper grid and

9 degrees with 509 3D points for tapetal cell set. The experiment clearly demonstrates

that the proposed model has a stable convergence behavior with respect to the different

numbers of generations and different 2D images.

3.7 Accuracy of the Prediction Model

In Section 2.4, we proposed a supervised machine learning approach to make a prediction

model, knowing whether a feature point could be considered as “significant” or “insignif-
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icant” for points matching. Here, a validation summary on the proposed supervised

prediction model is established. In the sense of machine learning strategies, accuracy,

precision, and recall are three common ways to analyze a prediction model, where accu-

racy refers to what percent of the predictions are correct, precision means what percent

of positive predictions are correct, and recall refers to what percent of positive cases are

detected [83], [115]. Table 3.4 shows the quantitative results for accuracy, precision, and

recall of the proposed prediction model. These values has been calculated as the following

equations [83], [115]:

Accuracy =
TruePositive+ TrueNagative

TruePositive+ TrueNegative+ False Positive+ FalseNegative

(3.17)

Precision =
TruePositive

TruePositive+ False Positive
(3.18)

Recall =
TruePositive

TruePositive+ FalseNegative
(3.19)

Our training and testing dataset includes a collection of 8 groups from a total of 41

2D SEM images containing 167241 feature points. For further examining the prediction

models, we also examined the Receiver Operating Characteristic (ROC) and Area Under

the Curve (AUC) [83], [115] for qualitative comparison of prediction models described in

Section 2.4. ROC is able to illustrate the performance of a classification algorithm. The

AUC was measured by the area under the ROC curve. Fig. 3.10 shows the ROC curve of

our prediction models. The area of SVM classifier represented a reasonable test, and the

areas of Logistic Regression and Naive Bayes classifiers were not good enough comparing

to the other classification strategies. The accuracy of the SVM classifier on our datasets

was working better than the Logistic Regression, Naive Bayes, or even Random Forest.
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Figure 3.8: A graphical comparison of 3D reconstructed surfaces of tapetal cell of Ara-
bidopsis thaliana using 3DSEM++, ADBA, and ASDBA techniques. We labeled our
proposed method as 3DSEM++. The graphical comparison shows that our proposed
optimized, adaptive, and intelligent strategy would be able to provide a better and de-
tailed 3D surface model. Further quantitative comparisons are illustrated in Table 3.2
and Table 3.3.

Therefore, we selected the SVM algorithm for making a prediction model on the feature

points dataset.

3.8 Quantitative Validation and Comparison

In this experiment, we further analyze the accuracy and reliability of the proposed ap-

proach for 3D SEM surface reconstruction. In doing so, the proposed system has been

applied on four synthetic 3D “Face” models [90] to quantitatively compare the accuracy

of the method with those two traditional methods mentioned in Section 3.5. We utilized

Meshlab [2] to simulate the rotation angle using the synthetic face models. In doing so,
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Table 3.2: Accuracy and reliability validation of our proposed method by examining
different variables including the number of generations for the DE algorithm. ∆R is
given as Rreal−Restimated (equation 3.16), indicating error for estimating the 3D rotation.
Rotation angles show the ground truth 3D SEM rotations (Rreal). In each row we used
only two images in the set. The elapsed times in this table indicate only SEM extrinsic
calibration.

Image set Total Matches Rotation angle Gmax ∆R Elapsed time

pollen grain 761 3 degrees 500 4.26E-03 10.12 Sec.
pollen grain 761 3 degrees 1000 8.31E-04 12.05 Sec.
pollen grain 761 3 degrees 1250 5.54E-04 13.26 Sec.
pollen grain 689 6 degrees 500 4.68E-03 8.96 Sec.
pollen grain 689 6 degrees 1000 8.81E-04 9.59 Sec.
pollen grain 689 6 degrees 1250 6.65E-04 10.15 Sec.
pollen grain 634 9 degrees 500 5.63E-03 8.01 Sec.
pollen grain 634 9 degrees 1000 8.87E-04 9.11 Sec.
pollen grain 634 9 degrees 1250 7.07E-04 9.72 Sec.
TEM copper grid 849 7 degrees 500 3.07E-03 13.97 Sec.
TEM copper grid 849 7 degrees 1000 7.91E-04 15.30 Sec.
TEM copper grid 849 7 degrees 1250 7.11E-04 16.81 Sec.
TEM copper grid 731 14 degrees 500 4.53E-03 9.94 Sec.
TEM copper grid 731 14 degrees 1000 8.57E-04 11.71 Sec.
TEM copper grid 731 14 degrees 1250 7.03E-04 12.08 Sec.
TEM copper grid 670 21 degrees 500 5.80E-03 9.81 Sec.
TEM copper grid 670 21 degrees 1000 8.91E-04 10.73 Sec.
TEM copper grid 670 21 degrees 1250 6.02E-04 11.88 Sec.
tapetal cell 546 9 degrees 500 2.11E-03 5.98 Sec.
tapetal cell 546 9 degrees 1000 5.01E-04 9.13 Sec.
tapetal cell 546 9 degrees 1250 4.98E-04 9.60 Sec.
tapetal cell 468 18 degrees 500 2.54E-03 6.51 Sec.
tapetal cell 468 18 degrees 1000 7.10E-04 8.87 Sec.
tapetal cell 468 18 degrees 1250 6.83E-04 9.16 Sec.
tapetal cell 423 27 degrees 500 2.82E-03 5.17 Sec.
tapetal cell 423 27 degrees 1000 7.47E-04 7.64 Sec.
tapetal cell 423 27 degrees 1250 6.98E-04 8.33 Sec.
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Table 3.3: Comparison of the proposed optimized, adaptive, and intelligent method
with two other traditional strategies namely ADBA and ASDBA. The elapsed times
in this table indicate only SEM extrinsic calibration. We labeled our proposed method
as 3DSEM++. ∆R is given as Rreal − Restimated (equation 3.16), indicating error for
estimating the 3D rotation.

Image set Method Total Matches Rotation angle ∆R

pollen grain ADBA 749 3 degrees 7.59E-02
ASDBA 749 3 degrees 6.13E-02
3DSEM++ 761 3 degrees 8.31E-04
ADBA 673 6 degrees 4.17E-02
ASDBA 673 6 degrees 3.09E-02
3DSEM++ 689 3 degrees 8.81E-04

TEM copper grid ADBA 830 7 degrees 3.88E-02
ASDBA 830 7 degrees 3.03E-02
3DSEM++ 849 7 degrees 7.91E-04
ADBA 722 14 degrees 6.17E-02
ASDBA 722 14 degrees 4.44E-02
3DSEM++ 731 14 degrees 8.57E-04

tapetal cell ADBA 509 9 degrees 7.39E-02
ASDBA 509 9 degrees 9.86E-03
3DSEM++ 549 9 degrees 5.01E-04
ADBA 441 18 degrees 2.41E-02
ASDBA 441 18 degrees 5.19E-03
3DSEM++ 468 18 degrees 7.47E-04

Hexagon TEM copper grid ADBA 15792 10 degrees 5.18E-04
ASDBA 15792 10 degrees 3.97E-04
3DSEM++ 16219 10 degrees 7.33E-05
ADBA 15128 20 degrees 8.01E-03
ASDBA 15128 20 degrees 5.46E-03
3DSEM++ 15307 20 degrees 6.53E-04

Guitar String ADBA 10819 4 degrees 8.29E-03
ASDBA 10819 4 degrees 7.31E-03
3DSEM++ 11417 4 degrees 2.24E-04
ADBA 10623 8 degrees 3.97E-03
ASDBA 10623 8 degrees 1.49E-03
3DSEM++ 11175 8 degrees 2.41E-04

TEM copper grid bar ADBA 6844 11 degrees 8.14E-04
ASDBA 6844 11 degrees 5.63E-04
3DSEM++ 6941 11 degrees 1.94E-05
ADBA 5726 22 degrees 1.06E-03
ASDBA 5726 22 degrees 6.17E-04
3DSEM++ 5806 22 degrees 8.22E-05
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Table 3.4: The accuracy results on a dataset including 167241 feature points from 2D
SEM images. We used 80% of the dataset to train a prediction model, and 20% to test
it. The accuracy, precision, and recall have been calculated using the equations 3.17 to
3.19.

Classifier Accuracy Precision Recall

Naive Bayes 86.54% 87.91% 86.22%
SVM 93.07% 94.33% 91.79%
Random Forest 89.36% 91.04% 91.13%
Logistic Regression 83.26% 83.93% 82.44%

we used “Transom:Rotate Camera” filter to rotate a 3D face model artificially, and then

took a photo from the face model. Fig. 3.11 shows how we generated 2D images from 3D

face models in Meshlab. A sample 3D visualization example of a face model using our

proposed 3D surface reconstruction technique on synthetic face models [90] is shown in

Fig. 3.12.

Here, we computed the geometric difference between the 3D “Face” models (the refer-

ence model and the one obtained by our proposed system) using Hausdorff Distance unit

(HDu) [28], [85]. HDu was developed several years ago to measure how close two subsets

of a metric space are to each other. HDu has been defined as the maximum distance of

a set to the nearest point in the other set [98]. HDu from set A to set B is a maximin

function, defined as follows:

h(A,B) = maxa∈A{minb∈B{d(a, b)}} (3.20)

where a and b are points of sets A and B respectively, and d(a, b) is any metric

(e.g., Euclidian distance) between these points. Maximum, minimum, and mean of HDu

values were estimated between the original 3D “Face” model as a reference, with one

obtained using the proposed 3D SEM surface modeling approach. We employed Meshlab

[2] as an advanced 3D mesh processing application to estimate the HDu values. The

HDu values which are presented in Table 3.5 state clearly that the proposed strategy

can produce more accurate 3D surface models than the two other techniques. We also
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Table 3.5: Hausdorff Distance unit values on the synthetic “Face” Models [90]. In this
table, our system is denoted as 3DSEM++.

Dataset Method 3D points HDu (min) HDu (max) HDu (mean)

Face instance #1 ADBA 9118 0.000000 0.413316 0.100449
ASDBA 9118 0.000031 0.160500 0.031006
3DSEM++ 9307 0.000004 0.021194 0.004218

Face instance #2 ADBA 6144 0.000017 0.193803 0.071284
ASDBA 6144 0.000000 0.070409 0.009106
3DSEM++ 6872 0.000000 0.006088 0.001407

Face instance #3 ADBA 9605 0.000000 0.730032 0.240019
ASDBA 9605 0.000049 0.096155 0.010137
3DSEM++ 10041 0.000014 0.016031 0.007151

Face instance #4 ADBA 7107 0.000000 0.319071 0.084141
ASDBA 7107 0.000000 0.117512 0.017703
3DSEM++ 7583 0.000000 0.010619 0.002019

used the “Face” model instances to examine 3D rotation calibration by synthetic data.

In doing so, we utilized Meshlab [2] and four instances of the “Face” model, rotating

3D models by different angles around X, Y, and Z axes. The results obtained by these

experiments are presented in Table 3.6.

3.9 What Have We Learned Experimentally?

There have been a number of conclusions we have reached through the experimental

validations. We briefly introduce them as follows:

• The experimental validations showed that SEM micrographs are suitable for 3D

SEM surface reconstruction using our proposed multi-view, optimized, adaptive,

and intelligent approach.

• Comparing two other traditional methods, our proposed method has produced bet-

ter results in both SEM extrinsic calibration and 3D SEM surface reconstruction.

• The number of correct corresponding points has a crucial impact on the quality of

3D surface models reconstructed by our proposed method.

• Not all SEM images are proper for 3D surface reconstruction using the proposed

approach. The proposed approach does not suit for either complex microscopic

53



www.manaraa.com

Table 3.6: Comparison of the proposed optimized, adaptive, and intelligent method with
two other traditional strategies, namely ADBA and ASDBA using the synthetic data.
We labeled our proposed method as 3DSEM++. The Face instance #1 tilted over X
axis, the Face instance #2 titled over Y, The Face instance #3 tilted over Z axis axis,
and the Face instance #4 tilted over X axis.

Image set Method Total Matches Rotation angle ∆R

Face instance #1 ADBA 3940 5 degrees 4.13E-02
ASDBA 3940 5 degrees 3.72E-02
3DSEM++ 4188 5 degrees 6.31E-04
ADBA 3837 10 degrees 2.85E-02
ASDBA 3837 10 degrees 1.63E-02
3DSEM++ 4039 10 degrees 5.29E-04

Face instance #2 ADBA 3629 10 degrees 2.52E-02
ASDBA 3629 10 degrees 2.11E-02
3DSEM++ 3711 10 degrees 4.66E-04
ADBA 3581 15 degrees 4.47E-02
ASDBA 3581 15 degrees 2.19E-02
3DSEM++ 3679 15 degrees 3.73E-04

Face instance #3 ADBA 3512 15 degrees 5.26E-02
ASDBA 3512 15 degrees 7.19E-03
3DSEM++ 3604 15 degrees 3.07E-04
ADBA 3477 20 degrees 1.11E-02
ASDBA 3477 20 degrees 2.21E-03
3DSEM++ 3568 20 degrees 4.19E-04

Face instance #4 ADBA 3312 25 degrees 3.14E-04
ASDBA 3312 25 degrees 2.19E-04
3DSEM++ 3459 25 degrees 2.90E-04
ADBA 3270 30 degrees 4.79E-03
ASDBA 3270 30 degrees 3.21E-03
3DSEM++ 3366 30 degrees 4.39E-04
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surfaces with shaded or very dark areas, or flat surfaces. In other words, the surface

should contain trackable features.

• 3D rotation calibration using the synthetic data produced better promising results

than real SEM images. This indicates that the 3D rotation angles provided by the

SEM are not completely and exactly accurate.

• Larger rotation angles have positive impact on the rotation calibration as well as

on the quality of 3D reconstructed surfaces. SEM micrographs taken at least every

9 or 10 degrees are recommended to produce a 3D surface model. Small rotation

angles do not appear to be appropriate to restore a reliable 3D surface from 2D

images.

• Microscopic samples must remain static during the SEM imaging process without

any non-rigid deformation.
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Figure 3.9: The convergence rates for Pollen grain (first row), TEM copper grid (sec-
ond row), and tapetal cell (last row) with respect to different number of generations in
Algorithm 2.1. Horizontal and vertical axes show the generation indexes, and the best
fitnesses respectively.
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Figure 3.10: The ROC curve for the feature point dataset dataset shows that the area
under the SVM classifier represents a better result compared to three other classification
algorithms.

57



www.manaraa.com

Figure 3.11: We utilized Meshlab to generate 2D images from the synthetic face models.
We first load a 3D face model into Meshlab, then use “Transform:Rotate Camera” filter
from the “Filter” menu. Using the “Rotation On” we can define the rotation axis. As
you see in this figure, the rotation angle has been defined as 15 degrees and the rotation
axis is around y.
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Figure 3.12: Quantitative validation and comparison of the proposed 3D SEM surface
reconstruction. A set of 10 2D images of a synthetic “Face” model along with its 3D
surface mesh and the reference structure are shown in this figure. The pose variations
are -60, -40, -20, -10, -5, 0, 20, 35, 60, 65 degrees around Y-axis. 6872 3D points were
used in the experiment to compare the accuracy on 3D shape modeling. Comparison of
HDu value results for the model is presented in Table 3.5.
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Chapter 4

The Dataset and Service Library

As a part of our contributions, in this chapter we will introduce a 3D SEM surface recon-

struction dataset namely “3DSEM”, and a service library called “SeLibCV” to advance

the 3D SEM surface reconstruction research. We will first discuss the dataset, and then

present the service library.

4.1 3DSEM: A 3D SEM Surface Reconstruction Dataset

The Scanning Electron Microscope (SEM) as a 2D imaging instrument has been widely

used in many scientific disciplines including biological, mechanical, and materials sci-

ences to determine the surface attributes of microscopic objects. However, the SEM

micrographs still remain 2D images. To effectively measure and visualize the surface

properties, we need to truly restore the 3D shape model from 2D SEM images. Having

3D surfaces would provide the anatomic shape of micro samples which would allow for

quantitative measurements and informative visualization of the specimens being inves-

tigated. The 3DSEM is a dataset for 3D microscopy vision which is freely available at

[5] for any academic, educational, and research purposes. The dataset includes both 2D

images and 3D reconstructed surfaces of different real samples.

4.1.1 How the Data Was Acquired

2D SEM images were captured with a Hitachi S-4800 field emission scanning electron

microscope (SEM). The 3D Shape models are created using the 3D SEM surface recon-

struction algorithm illustrated in chapter 2. The models and the underlying technologies

are fully explained in Chapter 2. The raw image data including 2D SEM images (SEM

micrographs) are provided by the Departmen of Biological Sciences Electron Microscope
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Table 4.1: Dataset Specifications.

Subject area Microscopy Vision, Biology, Materials Sciences
Type of data 2D SEM Images (.JPEG, .TIFF), 3D Surface Models (.PLY, .OFF)
Data format Digital Images, 3D Shape Models
Dataset location University of Wisconsin-Milwaukee

Laboratory at University of Wisconsin-Milwaukee, USA. The 3D surface models including

3D point clouds (.ply format) and 3D surfaces (.off format) are provided by the Biomed-

ical Modeling and Visualization Laboratory in the Computer Science Department at

University of Wisconsin-Milwaukee, USA.

4.1.2 Value of the Dataset

• Discovering 3D surface structure from SEM images would provide anatomic surfaces

and allow informative visualization of the objects being investigated.

• To provide the current dataset, an optimized, adaptive, and intelligent multi-view

3D SEM surface reconstruction algorithm is designed (Chapter 2).

• Several experimental validations are performed on real microscopic samples as well

as synthetic data. The quantitative and qualitative results are promising (Chapter

3).

• Many research and educational questions truly require knowledge and information

about 3D microscopic structures. The present dataset along with the algorithm

would be helpful in this way.

• The current dataset, which includes 2D SEM images and 3D surface models, and the

underlying methodology may serve as a guide for 3D SEM surface reconstruction.

4.1.3 Terms of Usage

The dataset is freely available for any academic, educational, and research purposes. The

terms of usage include:
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• 1) Users agree to cite [114] and [115] if the data is used for published research.

• 2) Users agree to use the data only for academic education or academic research.

• 3) Users agree to not distribute the data.

• 4) Users agree that the data may not be modified or used for non-academic purposes

without prior approval.

4.2 SeLibCV: A Service Library to Advance 3D SEM

Surface Reconstruction Research

Most of the underlying algorithms in 3D SEM surface reconstruction are complicated

in code, and their implementations are available for only a few special platforms. This

operational restriction causes various difficulties to utilize them, and even more, it makes

different challenges to establish novel experiments and develop new research ideas. These

computer vision strategies are essential for almost every computer vision problem, but

their implementations are often available in binary (executable) format. Unavailability of

multi platform implementations for such computer vision algorithms causes operational

restrictions to examine new experiments and develop modern applications especially in

the Internet of Things (IoT) era. SeLibCV is a Software as a Service (SaaS) library for

computer vision and microscopy researchers worldwide that facilitates Rapid Application

Development (RAD), and provides application-to-application interaction by tiny services

accessible through the Internet. Its functionality covers a range of 3D SEM surface

reconstruction algorithms including features detection and description, points matching,

and 3D surface reconstruction and visualization. SeLibCV [111] is freely and publicly

available at [6] for any academic, educational, and research purposes.

Concerning the software engineering, “Software as a Service” (SaaS) [9], [55] as the

basic idea behind the centralized computing, is a design pattern as well as a delivery

model in which a software could be accessed by human users through a web browser

or by an application using an application-oriented interface [1], [9], [55]. To our best
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knowledge, a SaaS based architecture has not yet been explored for highly demanded

3D SEM surface reconstruction algorithms and our work is one of the first to design

and develop a set of World Wide Web services for the computer vision and microscopy

community.

This contribution will target the following objectives: (1) To assist fast prototyp-

ing and Rapid Application Development (RAD) for the computer vision community by

tiny services available on the Internet, (2) To provide application-to-application interac-

tion for highly demanded 3D SEM surface reconstruction algorithms, (3) To make the

fundamental 3D SEM surface reconstruction algorithms available through both human-

oriented and application-oriented interfaces, (4) To provide better scalability in which the

SeLibCV can spread all requests between different parallel data sources without having

details of the resource to be implemented by service requesters, and (5) To create bet-

ter portability and interoperability by imposing no programming language or operating

system limitations in using the services.

Based on the unique architecture of SaaS [9], [55] and its functional attributes, it has a

remarkable impact on the computer vision community by either bringing a modern archi-

tectural model which is distinguished from traditional software architectures, or allowing

application-to-application communication through World Wide Web services. Employ-

ing SaaS architecture for computer vision algorithms will provide the following quality

attributes: 1) Accessibility and availability, anywhere, anytime, 2) Interoperability, 3)

Portability, 4) Less deployment time, and 5) Scalability.

The main idea of the work is that the SeLibCV could be considered as an initial step

towards the next generation of computer vision applications.

4.2.1 System Architecture

The “4+1” view model [14], [44] as the most commonly used software architectural model

template describes the anatomy of a software system using multiple concurrent views

including Use Case view, Logical view, Process view, Development view, and Physical

view. Here, we use the “4+1” view model to present and explain the Use Case and
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Figure 4.1: SeLibCV: Use Case View. This figure shows the main functionalities of the
system and how different users can interact with those functionalities.

Process diagrams of the proposed system.

Use Case View: This view is one of the fundamental perspectives of the “4+1”

view model which represents the main functionalities of the system along with their users

who can interact with the system [14]. The Use Case view of the SeLibCV is shown in

Fig. 4.1. Different users can login into the system as a previously granted user, and

then they can utilize the SeLibCV through the web. In case they intend to use the

web based functionalities, they have to upload their own images. The other option is

that the SeLibCV services may be called as a RESTful or SOAP based API [106] for a

granted consumer application developed with any programming language. In this case,

the services will work on the local images which are located in the consumer application’s

machine.

Process View: The process view deals with the dynamic aspects of a system to show

how objects will integrate into the the complete system based on a time sequence [14].

The sequence diagram of the process view is presented in Fig. 4.2.

4.2.2 Service Architecture

The high level service architecture of the SeLibCV is shown in Fig. 4.3. The service com-

promises two disparate machines: a service consumer (Client) and the service provider
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Figure 4.2: SeLibCV: Process View. The sequence diagram models the collaboration of
objects based on a time sequence. GET() defines a particular communication between
lifelines of an interaction. (A) A client by using an Internet browser can get into the
system once after authentication. (B) A consumer application can also use the system
once after authentication.
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Figure 4.3: SeLibCV: Service architecture. WSDL (Web Service Description Language)
is such an XML-based document for describing the SeLibCV services and how to access
it over the standard Internet protocols. UDDI is a specification for a distributed type
registry of the SeLibCV services which can communicate through SOAP, or Java RMI
Protocols. Discovery Service permits the discovery of the SeLibCV services. SOAP (Sim-
ple Object Access Protocol) is a XML-based Internet protocol for exchanging structural
information in the implementation of web services between computers and applications.
BPELWS (Business Process Execution Language for Web Service) aims to model the
main behaviors and operation of both executable and abstract implementation of the
web service processes.

(Application Server). Main components of each section are presented within the subsys-

tem blocks. The abstract view of the system is also shown in Fig. 4.4.

4.2.3 How to Use The SeLibCV Services

A complete user manual of the system is fully documented and available at [6]. In order

to use the SeLibCV services, users should send a request for a valid username/password

through [6]. We will then create and send them back the username/password to use the

SeLibCV services either through an Internet browser or a consumer application. Using a
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Figure 4.4: SeLibCV: Abstract view of the system. Different group of users can get into
the system using a browser, and developers may build a consumer application to call the
SeLibCV services without employing any browsers.

consumer application, the following sample code (Sample Code 4.1) is all that is necessary

to call the SIFT algorithm inside the SeLibCV. This sample code is written in Java to

get the SIFT description vectors.

SeLibCV is an ongoing research project being developed by the Biomedical Model-

ing and Visualization Laboratory in the Computer Science Department at University of

Wisconsin-Milwaukee, USA. It is publicly and freely available for any academic, edu-

cational, and research purposes. Users may include scientist, students, professors, re-

searchers, and Application Developers.

Sample Code 4.1. How to call the SIFT algorithm implemented in SeLibCV:

try {

SiftResult sift = proxy.sift(USER, PASS, fileContent);

BufferedImage img =

ImageIO.read(new ByteArrayInputStream(sift.getImageDate()));

ImageUtil.saveAsPNG(img, args[1]);

System.out.println("Results SIFT Image saved as: "+ args[1]);

System.out.println("SIFT result:");

for(int i=0; i< sift.getPoints().length(); i++) {

67



www.manaraa.com

System.out.println("X: " + sift.getPoints[i].getX()+

"Y: " + sift.getPoints[i].getY());}

} catch (Exception e) {

e.printStackTrace();

}
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Chapter 5

Tribological Study in Micro Scale: An Application of

3D SEM Surface Reconstruction

Tribology [41] as a branch of materials and mechanical engineering sciences incorporates

concepts of friction [82], wear [64], and lubrication to discover knowledge and facts about

different surfaces. The SEM and the optical microscope (OM) are two common types

of imaging equipment that have been used in tribological research to visualize and char-

acterize worn surfaces. SEMs are more practical than the OMs since: 1) They are able

to generate higher resolution and increased magnification as compared to OMs, and 2)

They can also provide a greater depth of field. While SEM micrographs still remain two-

dimensional (2D), tribological studies truly require information about three-dimensional

(3D) surface structures. 3D surface reconstruction of SEM images is very widely used in

the literature since it helps to analyze the surface roughness of worn surfaces [51] which

can imply the wear and friction behavior of materials. In this chapter, copper pins were

tested with a pin-on-disk tribometer on three different counterfaces (aluminum as softer

material, copper with the same hardness, and stainless steel as harder material) and worn

surfaces were further characterized by the proposed multi-view 3D SEM surface recon-

struction approach. The surface roughness of pin is also calculated by using the 3D SEM

surface reconstruction algorithm.

5.1 Sample Preparation

The dry pin-on-disk test (ASTM G99) was employed to investigate tribological behavior

at room temperature. During the wear test, a stationary pin was forced into a rotating

disk. Samples as pins were cut from as-received copper C110, with a contact surface

of the rounded, 6mm diameter shape. The disks were of hardened 440C stainless steel
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(harder than copper pin), C110 copper and aluminum 2024 (softer than copper pin). The

sliding distance was fixed to 1 km, allowing the system to reach a steady friction and wear

process. For each disk, at least three repetitive tests were performed. Subsequently the

worn surfaces were examined by scanning electron microscope at different angles (0, 8, 15,

24 and 35 degrees). These images were used to reconstruct the 3D surface. SEM analysis

was carried out on both etched and worn surfaces of specimens using a Hitachi S-4800

ultra high resolution cold cathode field emission scanning electron microscope (FE-SEM)

operating at 10 kV.

5.2 3D Surface Roughness Measurement

After discovering the triangulated estimate of the surface model, the roughness of the

surface between any given pair of points on the surface can be approximated. Assuming

the two points of interest are called A and B, a line is drawn between the two points.

Then, the line is projected onto the triangulated surface estimate. The 2D plot of the

projected line represents the surface profile along AB direction. Then, the surface profile

is rotated such that the starting and ending points are at the same height (line AB′,

Figure 5.1). The surface roughness is calculated as the average of the absolute value of

the rotated surface profile:

Ra =
1

|AB|

∫ B

A

|y(x)|dx

5.3 The Dataset

Dataset’s names and attributes are shown in Table 5.1.

5.4 Tribological Analysis

The effects of the counterface materials on the dry-sliding coefficient of friction (COF) of

the copper alloy are shown in Fig. 5.2. The average COF of copper alloy on aluminum,

copper and stainless steel is 0.367, 0.540, and 0.268, respectively. The results of COF
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Table 5.1: The Dataset Attributes.
Image sets (1): An Aluminum Surface

(2): A Copper Surface

(3): A Stainless Steel Surface

Images properties 1280*960 grayscale, 512 dpi
Number of images in every set 5 SEM images
Rotation angle 0, 8, 15, 24 and 35 degrees
SEM detector SE (mix)
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Figure 5.1: The surface profile between the two points A and B. Before finding the
surface roughness, the profile is rotated such that line AB is horizontal.

exhibit that COF of copper alloy on stainless steel counterface is better than on the

aluminum and copper counterface, and the steel counter face shows higher COF because

of the formation of iron-rich layers that act as in-situ solid lubricants in the former case,

but not on the surface of copper pins against copper and aluminum. The iron oxide rich

layers are known to have low coefficient of friction. The linear wear-loss was acquired

through a linear variable differential transducer (LVDT) with an encoder, which recorded

the vertical displacement of the pin. Fig. 5.3 presents the amount of wear of the different

mating disc pairs as a function of time. The results reveal that copper alloy has lower

linear wear on stainless steel counterface while it shows higher linear wear on aluminum

counterface due to formation of in-situ solid lubricants and decreasing the real contact

area between copper pin and stainless steel disk. Another reason is that wearing the

materials against a counterface which has a smaller thermal conductivity, led to the

occurrence of severe wear. Therefore, wear of copper against aluminum and copper is

higher than stainless steel counterface.

Fig. 5.4 shows the worn surface of pins used on different counterfaces. It is obvious

that the wear rate of copper on an aluminum counterface is very high because of the

visible large grooves and the large amount of debris on the surface of the copper, as

shown in Fig. 5.4 (a). On the other hand, the surface of copper pins against copper and
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Figure 5.2: Variation of COF of copper pin against several counterfaces.

Figure 5.3: Variation of wear of copper pin against several counterfaces.
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Figure 5.4: The SEM images of the worn surface of copper pins against a) aluminum, b)
copper, and c) stainless steel.

stainless steel is smoother, and lower wear rate and less debris were observed on the worn

surfaces. Fig. 5.5 shows the 3D topography image and linear topography of copper pin

against different counterface. As expected, the worn surface of copper against aluminum

is very rough, while smoother worn surfaces were observed for copper pins against copper

and stainless steel disks.

Applications of the scanning electron microscope (SEM) in the material and mechan-

ical sciences have contributed tremendously to our current understanding of surfaces at

the micro level. SEM images can capture intricate details down to nm resolutions in the

image plane. The problem is that the SEM images are initially limited to two-dimensional

representations. 3D surface modeling of SEM images has progressively improved to allow

the 3D characterization of different micro structures and surfaces.

74



www.manaraa.com

Figure 5.5: The 3D topography and linear topography of the worn surface of copper pins
against a) aluminum, b) copper, and c) stainless steel.
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In this research, a set of advanced computational algorithms have been combined

to tackle the problem of tribological analysis at the micro scale. By taking advantage

of the multiple view geometry and a global optimization method, we developed a 3D

SEM surface reconstruction solution for the purpose of tribological analysis of micro

surfaces. This study showed that 3D surface reconstruction of SEM images is well suited

to tribological analysis of microscopic structures. The entire workflow does not need any

specific computer hardware requirements, which makes it an inexpensive solution.

The quality of a resulting 3D surface model depends on various factors, such as surface

structure, shape, the SEM micrograph quality and SEM imaging parameters. Complex

surfaces as well as dark and shaded images are not suitable for the proposed algorithm.

This work opens up so many possibilities for seeing and examining micro surfaces

in new ways that will certainly redefine the way we analyze the nanoworld samples.

Improvements in such proposed 3D SEM surface reconstruction methods are necessary if

the technique is to become fully integrated in materials sciences research.
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Chapter 6

Conclusion and Outlook

The SEM, as one of the most highly used types of equipment in analyzing micro scale

objects, employs electrons instead of light to determine the surface attributes of micro-

scopic samples. The image formation in a SEM is based on the perspective projection in

which the three dimensional object is projected onto a 2D image plane and, therefore, it

contains no direct 3D information.

Having 3D surfaces from SEM images would assist analyzing true anatomic shapes of

micro samples, providing quantitative measurements and informative visualization of the

sample being investigated. To meet these requirements, this work focused on investigating

adaptive and intelligent strategies to recover the 3D surface model of images acquired by

a SEM. We integrated advanced computational technologies, such as machine learning,

a contrario model estimation, and epipolar geometry to make an efficient multi-view

3D SEM surface reconstruction framework, namely 3DSEM++. A detailed performance

evaluation and comparison of the proposed system with other traditional methods has

also been carried out. The promising validation results of extensive experiments from

different perspectives using both real microscopic samples as well as synthetic data are

reported in this contribution.

This pilot study was leveraging computational methods for the purpose of 3D SEM

surface modeling. The presented strategy is quite useful for the fast growing SEM appli-

cation area and it is a remarkable extension for teaching purposes.

There are a number of outstanding issues with 3D SEM surface reconstruction tech-

niques which we discuss here. We divide this section into two parts. In Section 6.1,

we first point out the problems and challenges in SEM-based 3D surface reconstruction,

and then, in Section 6.2, we address several insights and directions for possible future

enhancements in this rapidly progressing field.
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6.1 Problems and Challenges

In this section, we discuss the problems and challenges in 3D SEM surface reconstruction

using different techniques as illustrated in the taxonomy (Fig. 1.2).

Invisible parts will not be reconstructed The main problem is that both single-

view and multi-view 3D SEM surface reconstruction algorithms are applicable for those

surfaces which are completely visible in a sample. Invisible and occluded parts by other

objects or components will not be restored.

Distortions and noise in SEM images Like any other microscopic devices, the

SEM images are vulnerable to different types of errors which interfere with a pure signal.

The most prominent errors include: 1) Image distortions caused by the plane array of

the detectors, 2) The elements of this array might have unequal sensitivity causing error,

3) Also, the quadruple detector system being asymmetric generates some errors, and 4)

Noise as an unwanted component generated during the whole process of SEM imaging

causes some errors as well [42].

Multiple highlights and shadows Employing BSE detectors, the SEM images

will suffer from multiple highlights and shadowing effects. The presence of shadows or

highlights have been responsible for reducing the reliability of 3D SEM surface recon-

struction techniques, in particular for single-view approaches [11].

Limited number of images The other problem is that we may have to reconstruct

the 3D surface model from a small number of SEM images. While the accuracy of multi-

view 3D SEM surface reconstruction strategies needs a large number of images, the SEM

specimen can tilt only from -5 to at most 70 degrees, depending on the size of the specimen

mount (usually diameter) that the sample is mounted on as well as on the location of the

specimen (Z or height) within the column of the microscope. These constraints limit the

number of images that may be taken. On the other hand, small rotation angle does not

appear to be appropriate to restore a reliable 3D surface from 2D images.

Vanishing points In multi-view 3D SEM surface reconstruction algorithms, one

critical problem arises from vanishing points in the image sequence. Using multi-view
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surface reconstruction systems, we use projective geometry principal to initialize the 3D

position of only matching points in the image set. As we begin considering more than

two images, it becomes unlikely that all matching points in the first image pair are

observable in the other pairs. The only existing way to tackle the problem is using the

incremental pipeline [68], [127]. The incremental multi-view 3D surface reconstruction is

an iteratively growing reconstruction process in which it starts from an initial two-view

reconstruction, and then is iteratively extended by adding new views and 3D points,

using both pose estimation and triangulation. The technique was employed as part of

our proposed method.

6.2 Possible Future Enhancements

Here, we point out different future enhancements which may affect the research in several

ways.

Low-level and medium-level image processing techniques In the previous

section we mentioned several sources in the SEM which produce different kinds of noises,

highlights and multiple shadows on SEM images, which consequently decrease the relia-

bility and accuracy of 3D SEM surface modeling. Digital image processing techniques are

widely used in such areas due to their ability to reduce noises [102], detect shadows [65]

and highlights, and remove them from the original images. One future enhancement is to

create a system that can automatically perform low and medium level image processing

algorithms to provide better 2D images such that they can help us to produce much more

reliable 3D surfaces.

Application area The value of any research might be evaluated by how effective

it is in real applications. We introduced several applications of the 3D SEM surface re-

construction in Chapter 1. A desirable improvement would be expanding the application

areas from bioscience, material, and mechanical engineering to other scientific domains

which need to know and evaluate the 3D shape information. The present work is expected

to stimulate more interest and draw attention from the computer vision community to
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the fast-growing SEM application area.

Public datasets Recovering the structures of SEM images requires having a database

which includes large number of different SEM images captured under wide variety of il-

lumination directions as well as from different perspectives. We foresee a need to extend

such a public and global database over the Internet to examine and analyze the 3D SEM

Surface reconstruction methods by applying them to various microscopic samples and

SEM images.

Dense Matching Not every microscopic object is proper for 3D SEM surface recon-

struction using our proposed model. The microscopic sample must remain static during

the imaging process without any non-rigid deformations. The other limitation is that the

proposed approach does not suit for either complex micro surfaces with very dark areas or

flat surfaces. In other words, the surface should contain trackable features. The remedy

can be sought in more elaborate matching methods by utilizing dense matching instead

of sparse matching. In such techniques, the first step of the matching process, keypoint

localization, is eliminated and descriptors are defined for every pixel in the image instead.

By using such techniques, one can define smoothness constraints on the matching energy

functional to account for featureless regions in the images.

Embedded system architecture community As we discussed in Section 1, 3D

SEM surface reconstruction showed a great success in a variety of applications. However,

its extensive computational complexity has been a problem to implement such a real-

time system. Considering hardware issues along with effective embedded system design

[92], [132] will reduce the time complexity and should be able to provide real-time 3D

microscopy vision.

Machine learning community There is not yet a principal computation innova-

tion based on the machine learning approaches. We believe that some novel solutions are

beyond the scope of computer vision and require collaboration from the machine learning

and artificial intelligence community. The resulting algorithms will allow researchers to

achieve higher accuracy with limited computational complexity, and make the approaches

appropriate for real-time operations.
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Software architecture and Internet of Things community As an important

enhancement, it is beneficial to design, develop and implement a set of web services, such

as the reusable, platform independent, and extensible software components for 3D SEM

vision to allow application-to-application interaction over the standard Internet protocols

[56], [57], [128], [129]. These web services will provide a distributed platform to create

communication between the highly demanding computer vision applications and World

Wide Web services, and open the doors from the 3D microscopy vision to the Internet of

Things (IoT) area [12], [70], [124].

Plug 3D SEM into the Cloud Cloud computing is one of the most discussed

topics in the computer science world in recent years. Today, people choose cloud appli-

cations in cases where they have more integrity as well as low-cost implementations. On

the other hand, several big software companies have started the development of cloud

services to explore the benefits of incorporating such cloud architecture services in their

own business. As the number of Cloud computing services are increasing rapidly, the

essential need for such a particular framework appears. Plugging 3D SEM surface re-

construction into the Cloud would take full advantages of Cloud computing by deploying

3D microscopy vision as a service in private Clouds with Amazon or Google for vastly

expanding research, academic and educational purposes.
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